Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thick marine beds of siderite suggest early high carbon dioxide in atmosphere

27.05.2004


Carbon dioxide and oxygen, not methane, were prevalent in the Earth’s atmosphere more than 1.8 billion years ago as shown by the absence of siderite in ancient soils but the abundance of the mineral in ocean sediments from that time, according to a Penn State geochemist.



"The absence of siderite in some ancient soils has been linked to low carbon dioxide levels in the atmosphere, levels that would be too low to compensate for the cooler sun 2.2 billion years ago," says Dr. Hiroshi Ohmoto, professor of geochemistry and director of the Penn State Astrobiology Research Center. "The absence of siderite in these soils, however, does not constrain atmospheric carbon dioxide, but occurred because the oxygen and acidity of well-aerated soils caused iron to form into other minerals."

Previous researchers suggested that the greenhouse gas methane compensated for the low carbon dioxide levels, making the Earth warm enough for water to flow.


Ohmoto; Yumiko Watanabe, research associate Penn State, and Kazumasa Kumazawa, Oyo Corp. Miyazaki City, Japan, report in today’s (May 27) issue of the journal Nature, that the abundance of large, massive siderite-rich beds in pre-1.8 billion year old sedimentary sequences and their carbon isotope ratios indicates that the atmospheric carbon dioxide concentration was more than 100 times greater than today, causing the rain and ocean water to be more acidic than today. This high carbon dioxide content, without methane provided the necessary greenhouse effect to maintain liquid oceans in the early Earth.

Previous research recognized that siderite forms in soils when the carbon dioxide pressure in the atmosphere is above a certain level. No siderite in some ancient soils therefore implied lower levels of carbon dioxide.

Ohmoto and his associates, however, looked at four, rather than one, parameters involved in siderite formation. They investigated the effects of carbon dioxide, oxygen, acidity and amounts of iron in solution. The acidity of rainwater in the past was greater than it is now, and they found that the combination of greater acidity and oxygen in the atmosphere, not a low content of carbon dioxide, was the reason for the absence of siderite in some ancient soils.

At the same time that siderite is missing from soils, it is abundant in ocean sediments before 1.8 billion years ago and formed thick bands of mineable ores. The high abundance of siderite in marine sediments and their carbon isotope ratios can be explained only if the carbon dioxide pressure in the atmosphere was more than 100 times, perhaps as much as 1000 times, higher than today’s level. If the methane content was as high as the level suggested by previous researchers, the combination of high carbon dioxide and methane could have made the early Earth too hot for life. But geologic evidence suggests the life flourished in the oceans and land since at least 3.5 billion years ago. Therefore, the atmospheric methane content must have been very low.

"The atmosphere cannot have high contents of both methane and oxygen," says Ohmoto. "If one is high, the other must be low, or both must be low. So, the combination of high oxygen, high carbon dioxide and low methane was a perfectly happy scenario on Earth prior to about 1.8 billion years ago.

"How the Earth’s atmosphere changes through time is related to how it maintains habitable conditions on the planet," adds the Penn State researcher. "If we understand geological history better, we may understand how life evolved and may evolve in the future. Perhaps it will make us realize how humans should or should not interfere with the Earth’s systems." Understanding of the Earth’s early atmospheric history will also tell us what to look for when looking for life on extra-solar plants.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>