Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA and USGS magnetic database ’rocks’ the world

19.05.2004


Band Iron Formations

These Band Iron formations are precambrian sedimentary rocks. They are highly magnetic. Band Iron Formations like this one were responsible for prominent variations in Earth’s magnetic field, like the Kursk Magnetic Anomaly that was remotely sensed by satellites. Kursk is located in western Russia, at the confluence of the Seym and Tuskar rivers. Credit: Photo courtesy of P.Hoffman


Lithospheric Magnetic Anomalies

This image shows variations in magnetic fields in the upper layer of Earth’s surface known as the lithosphere. The data were acquired by satellites passing over at an altitude of 400 km. The satellite data were run through a model to produce this image. The units are in nanoteslas, the common unit for measuring magnetic fields. The color bar indicates areas with positive and negative magnetic fields. Credit: Terrence Sabaka et al./NASA GSFC


NASA and the United States Geological Survey (USGS) are teaming up to create one of the most complete databases of magnetic properties of Earth’s rocks ever assembled. The partnership demonstrates ongoing interagency collaboration.

Satellite data of Earth’s magnetic field combined with rock magnetic data collected on the ground will provide more complete insight into Earth’s geology, gravity and magnetism.

Satellites, including NASA’s Magsat, have detected magnetic signals in the upper layer of the Earth, called the lithosphere. With over 36,000 rock samples, the combined database will help researchers determine the origin of these signals in Earth’s crust.



The database will be available to the public via the Internet. A clickable map of the world will include locations where detailed rock magnetic data were collected.

Open access to specific properties and locations of each type of rock will allow researchers to more accurately model Earth’s gravity and magnetic fields. This should improve our understanding of the structure and development of Earth’s crust.

“The information in this database will allow more realistic interpretations of satellite magnetic data and will contribute to a variety of studies such as groundwater, mineral resource, and earthquake hazard investigations,” said Katherine Nazarova, a researcher at NASA Goddard Space Flight Center (GSFC) who is coordinating the collaborative effort with Jonathan Glen from the USGS.

The NASA GSFC database contains magnetic properties of 19,000 samples. The samples come from all over the world including the Ukrainian and Baltic shields, Kamchatka, the Ural Mountains and Iceland.

2000 Icelandic rocks in the database have helped explain the source of unusual magnetic activity in Iceland recorded by both Magsat and German Champ missions. Database records revealed the magnetic shifts in Iceland were caused by ferrobasalts, analogues to Martian rocks. As researchers continue to study Mars, these findings may shed light on Mars’ geology.

The USGS database contains rock densities and magnetic properties for some 17,000 entries. Many of these data were taken from surface outcrops in the Western U.S. They span a broad range of rock types.

Researchers collect rock specimens and data in a variety of ways. Research vessels are used to dredge samples from the ocean floor. Ships may also carry huge deep-sea drills that pull cores of sediment and rock from the beneath the ocean. The database includes rock magnetic data from the deepest borehole in the world. It was drilled in northern Russia in the Baltic Shield. Researchers drilled and extracted cores from the continental crust as deep as 12.26 kilometers (7.62 miles).

On land, scientists may collect samples from rock outcrops. When rocks have been exposed to the elements, researchers use small hand drills to uncover fresh material under a rock’s surface.

Satellites that have detected unexplained variations in Earth’s magnetic field include NASA’s Magsat and Polar Orbiting Geophysical Observatory, Germany’s Champ satellite, and the Danish Oersted satellite.

The combined USGS and GSFC databases and future updates will eventually be available and maintained through the National Oceanic and Atmospheric Administration at the World Data Center A in Boulder, Colorado.

Nazarova will present a poster describing the database at the 2004 Joint Assembly of the American Geophysical Union taking place this week in Montreal, Canada.

The mission of NASA’s Earth Science Enterprise is to develop a scientific understanding of the Earth System and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0517magnet.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>