Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites see shadows of ancient glaciers

14.05.2004


People in the central and eastern United States and Canada are used to the idea that the land they live on -- its variety of hills, lakes and rivers -- are left over from the great mile-thick ice sheets that covered the area 18,000 years ago.



They may, however, be surprised to learn that today, long after the glaciers melted, an international research team led by Northwestern University geologists using the Global Positioning System (GPS) satellites can "see" the land moving -- up to half an inch per year in some places -- as the earth rebounds in response to the ice that once pushed the land down.

Looking at data from more than 200 sites across the continent, the researchers discovered a spectacular pattern. While sites in Canada are rising, with those near Hudson Bay (where the ice load was heaviest) rising the fastest, U.S. sites south of the Great Lakes are sinking instead of rebounding.


Giovanni Sella, postdoctoral fellow in the department of geological sciences at Northwestern, will present the research team’s results at 2 p.m. Wednesday, May 19, at the Spring Joint Assembly of the American Geophysical Union and Canadian Geophysical Union in Montreal, Canada.

"If you take the load off of road tar it won’t pop back immediately," said Seth Stein, professor of geological sciences at Northwestern. "The earth is similar -- the ground continues to rebound as the viscous mantle flows back in. It is amazing that we can actually see this going on now. The glaciers continue to make their presence felt."

These small motions resulting from "post-glacial rebound" (GPS can detect motions as small as 1/25 of an inch per year) stem from the fact that the mantle below the earth’s crust flows like a super-viscous fluid -- much, much stickier than road tar or maple syrup. The mantle is still flowing to fill areas underneath the places where the heavy ice sheets pushed out the mantle 18,000 years ago.

Post-glacial rebound also affects the water levels of the Great Lakes. As the northern shores rise, water levels are steadily decreasing. Conversely, as the southern shores sink, water levels are rising. This impacts not only industries and homeowners along the shores of the Great Lakes but also the international management of water levels, dams and shipping.

These small motions may well be one of the causes of the mysterious earthquakes that occur in the center of the North American continent, including the St. Lawrence Valley, northern New England, and perhaps even the New Madrid earthquake zone in the central United States, and along the Atlantic coast including Newfoundland.

"This idea has been around for a while, but until now, no one knew how large the ground movements were across the area," said Stein. "We believe they may have significant effects."

Another good reason to study post-glacial rebound is that it tells about the properties of the deeper earth. The initial GPS results indicate that the lower mantle (below a depth of 400 miles) is probably not much stiffer than the upper mantle, contrary to what has been often thought.

In addition to Sella and Stein, other members of the project include Timothy Dixon and Shimon Wdowinski from the University of Miami; Michael Craymer from the Geodetic Survey Division of Natural Resources Canada; Thomas James and Stephane Mazzotti from the Geological Survey of Canada of Natural Resources Canada; and Roy Dokka from Louisiana State University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu/news/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>