Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Satellites see shadows of ancient glaciers


People in the central and eastern United States and Canada are used to the idea that the land they live on -- its variety of hills, lakes and rivers -- are left over from the great mile-thick ice sheets that covered the area 18,000 years ago.

They may, however, be surprised to learn that today, long after the glaciers melted, an international research team led by Northwestern University geologists using the Global Positioning System (GPS) satellites can "see" the land moving -- up to half an inch per year in some places -- as the earth rebounds in response to the ice that once pushed the land down.

Looking at data from more than 200 sites across the continent, the researchers discovered a spectacular pattern. While sites in Canada are rising, with those near Hudson Bay (where the ice load was heaviest) rising the fastest, U.S. sites south of the Great Lakes are sinking instead of rebounding.

Giovanni Sella, postdoctoral fellow in the department of geological sciences at Northwestern, will present the research team’s results at 2 p.m. Wednesday, May 19, at the Spring Joint Assembly of the American Geophysical Union and Canadian Geophysical Union in Montreal, Canada.

"If you take the load off of road tar it won’t pop back immediately," said Seth Stein, professor of geological sciences at Northwestern. "The earth is similar -- the ground continues to rebound as the viscous mantle flows back in. It is amazing that we can actually see this going on now. The glaciers continue to make their presence felt."

These small motions resulting from "post-glacial rebound" (GPS can detect motions as small as 1/25 of an inch per year) stem from the fact that the mantle below the earth’s crust flows like a super-viscous fluid -- much, much stickier than road tar or maple syrup. The mantle is still flowing to fill areas underneath the places where the heavy ice sheets pushed out the mantle 18,000 years ago.

Post-glacial rebound also affects the water levels of the Great Lakes. As the northern shores rise, water levels are steadily decreasing. Conversely, as the southern shores sink, water levels are rising. This impacts not only industries and homeowners along the shores of the Great Lakes but also the international management of water levels, dams and shipping.

These small motions may well be one of the causes of the mysterious earthquakes that occur in the center of the North American continent, including the St. Lawrence Valley, northern New England, and perhaps even the New Madrid earthquake zone in the central United States, and along the Atlantic coast including Newfoundland.

"This idea has been around for a while, but until now, no one knew how large the ground movements were across the area," said Stein. "We believe they may have significant effects."

Another good reason to study post-glacial rebound is that it tells about the properties of the deeper earth. The initial GPS results indicate that the lower mantle (below a depth of 400 miles) is probably not much stiffer than the upper mantle, contrary to what has been often thought.

In addition to Sella and Stein, other members of the project include Timothy Dixon and Shimon Wdowinski from the University of Miami; Michael Craymer from the Geodetic Survey Division of Natural Resources Canada; Thomas James and Stephane Mazzotti from the Geological Survey of Canada of Natural Resources Canada; and Roy Dokka from Louisiana State University.

Megan Fellman | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>