Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact at Bedout: ’Smoking gun’ of giant collision that nearly ended life on earth is identified

14.05.2004


Evidence is mounting that 251 million years ago, long before the dinosaurs dominated the Earth, a meteor the size of Mount Everest smashed into what is now northern Australia, heaving rock halfway around the globe, triggering mass volcanic eruptions, and wiping out all but about ten percent of the species on the planet. The "Great Dying," as it’s called, was by far the most cataclysmic extinction event in Earth’s history, yet scientists have been unable to finger a culprit as they have with the dinosaur extinction. A new paper published in Science, however, claims to identify the crater made by that meteor, and it builds upon an ongoing body of evidence by researchers at the University of Rochester and the University of California at Santa Barbara (UCSB), that points the finger for the Great Dying squarely at the heavens.



"This is very likely the impact site we’ve been looking for," says Robert Poreda, professor of earth and environmental sciences at the University of Rochester. "For years we’ve been observing evidence that a meteor or comet hit the southern hemisphere 251 million years ago, and this structure matches everything we’ve been expecting."

In 2001, Poreda and Luann Becker, research scientist in geological sciences at UCSB, announced that they had detected in 251-million-year-old strata, specific isotopes of helium and argon trapped inside buckyballs--a cage-like formation of carbon atoms--that could only have come from space. Since they were laid down in this same strata around much of the globe, the implication was that a giant meteor had struck the Earth, vaporized, and settled around the southern hemisphere. This past November, the same three authors--Poreda, Becker, and Asish Basu, professor of earth and environmental sciences at the University of Rochester--published another article in Science that found actual pieces of the meteorite that struck the Earth in the same global strata.


Many experts scoffed at the idea of a giant meteor causing the mass extinction between the Permian and Triassic periods, but Poreda points out that many also scoffed at the idea that a meteor was responsible for a later and lesser extinction at the Cretatious/Tertiary boundary that marks the end of the dinosaurs. Now, the impact theory is largely accepted.

The team knew that the chances of finding the crater, even one from an impact large enough to nearly wipe out life on Earth, would be difficult because the majority of the Earth is covered by ocean. Had the meteor struck there, its telltale crater would have long ago disappeared. As luck would have it, an oil-drilling exploration team in 1970 found a "dome" in the area of Bedout, just off the northwestern coast of Australia. Now covered by 2 miles of sediment, this area was most likely dry land 251 million years ago. Frequently, such domes herald large oil deposits, but in this case the drilling team found only what it labeled as "volcanic rock." The core samples were shelved and forgotten for 25 years, until in 1995 a report in a journal aimed at the oil industry mentioned that the rock might have been formed from a meteor impact.

It wasn’t until Becker caught wind of the "volcanic" find in 251 million year old rock that the team members began to think they’d found their smoking gun. Poreda and Becker investigated the core samples first hand. "They were unlike any volcanic rocks I’ve ever seen," says Poreda. "In a volcanic explosion you may find angular pieces of rock that are broken apart mixed with the volcanic melt. In these samples, though, the rocks were shock melted from an impact.. We left convinced Bedout was our crater."

The clincher was the presence of a feldspar glass in the shape of a feldspar crystal. Such features do not form in volcanic eruptions. Many of the plagioclase samples showed evidence of sustaining an intense shock, meaning the meteor likely hit a bed that contained feldspar crystals, shock-melted their interiors, melting their insides the way a microwave oven might bake a potato’s inside while leaving the outer areas cool.

"Once we looked at Bedout with the understanding that it was likely a crater, the geophysics just fell into place," says Poreda.

Geophysical analysis shows the rock strata underlying the dome at Bedout is fractured exactly the way the team expected--showing rock strata older than 251 million years old broken apart, with younger rock above laid down without the fractures. Simulations of a six-mile wide rock striking the area suggest a crater rim should be visible about 60 miles from the central dome, and despite the extreme age of the impact site and the rearrangement of continental plates since then, there is evidence of a rim at that distance. The team has plans to explore the geophysical outlay of the region with more scrutiny.

Coincidentally, the Bedout crater, at 120 miles across, is almost exactly the same size as the Chicxulub crater in the Caribbean that has been identified as the impact site of the meteorite that dealt the dinosaurs their death blow. It’s likely that the bodies that struck at each site were of the same size and traveling at similar speeds.

Along with both impacts correlating strongly with two of the greatest extinctions in Earth’s history, the team has found that massive lava flows in two different parts of the world have similar corrolations. Basu showed that massive lava flows in India date back precisely to the Chicxalub impact, and recently he also reported that similar giant lava flows in Siberia coincide exactly with the Bedout impact.

"There have been five mass extinctions throughout the Earth’s history," says Poreda. "Now we have very strong evidence that massive meteor impacts happened precisely at two of those extinctions."


The research was funded by NASA and the National Science Foundation.

Jonathan Sherwood | University of Rochester
Further information:
http://www.rochester.edu/news/show.php?id=1787
http://www.sciencexpress.org

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>