Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two water testing methods could prove useful in predicting effects of global climate change

12.05.2004


Ohio State University geologists and their colleagues have used two water-testing methods together for the first time to help a Gulf Coast tourist community manage its water supply.

The two methods could prove useful for gauging how rising sea levels -- one of the possible effects of global climate change -- might cause salt water to infiltrate drinking water along coastal areas in the future.

Anne Carey, assistant professor of geological sciences at Ohio State, likened Baldwin County in southwestern Alabama -- where the study was conducted -- to the Chesapeake Bay area, where rising seawater has already covered some islands and ruined agriculture on others.



“Sea level is rising in places where coastal development is rapid,” Carey said. “Some wells have been abandoned in Baldwin County due to salt water intrusion. Increased water usage and sea-level rise are likely to exacerbate the problem.”

To map water usage, geologists often measure the age of water taken from different sites around a region. The age suggests how quickly rainwater renews the water supply, and how quickly seawater could potentially enter the system.

The Alabama site was ideal for Carolyn Dowling, a post-doctoral investigator with Ohio State’s Byrd Polar Research Center, to compare two different methods of water dating for her doctoral dissertation. One was the well-known radiocarbon dating, which measures the presence of the isotope carbon-14, while the other was a lesser-known method that measured the isotope helium-4.

Though scientists long thought the two methods were incompatible, Carey and Dowling successfully used both together to determine that ages in different wells ranged from 50 years to 7,500 years. The results appear in a recent issue of the Geological Society of America journal Geology.

Carbon dating placed the ages of water from different wells in a range of approximately 375 to 7,000 years old, and the helium method suggested a similar range -- 50 to 7,500 years old.

To Carey, the ages themselves are not particularly surprising.

“This isn’t really, really old water -- it’s all from the Holocene, the period since the last ice age,” she said. “In northern Ohio, there are places where people are pumping Pleistocene water [more than 10,000 years old].”

“It was startling to the well operators that their waters were that old, but it isn’t a startling story geologically,” she continued. “The important part of the research is that we could show the nice correspondence between the two methods, which has never been done before.”

Any prediction of how quickly global climate change could cause salt water to infiltrate Baldwin County would require further study, Carey said. But this early work shows that scientists can use both dating methods simultaneously to get a more reliable view of water usage.

“Any time you can measure something with two different methods, you can be more confident in the results,” she said.

Water usage in Baldwin County surges during the spring and summer tourist seasons, when turf grass farms also draw on freshwater supplies for irrigation. More than 20 percent of the county is water, and its extensive lowlands would make it particularly susceptible to flooding, should water levels rise in the Gulf of Mexico.

That’s why the Department of Energy’s National Institute for Global Environmental Change was interested in the region, and commissioned the study.

Carey, Dowling, and colleague Robert Poreda at the University of Rochester tested the water from 12 wells around Baldwin County using both methods.

Carbon dating measures how much carbon-14 is left in the water since the last time the water contacted carbon dioxide in the air. Helium dating measures how much helium has dissolved into the water from surrounding rock as it lay underground. Both give scientists a measure of how long water has been in a particular well or aquifer.

The results also suggested that the Baldwin County well operators are doing a good job of drawing fresh water from the right places at the right time to keep salt water from entering the system for now.

Saltwater infiltration could become a bigger issue in the future with global climate change.

Over the last 100 years, sea level worldwide has risen an average of 2 millimeters per year. The melting of tropical glaciers and polar ice caps, which scientists have documented in recent years, could increase that rate. A warmer climate would also heat the oceans, causing them to expand -- and sea level to rise further.


Contact: Anne Carey, (614) 292-2375; Carey.145@osu.edu
Carolyn Dowling, (614) 292-3229; Dowling.37@osu.edu

Pam Frost Gorder | OSU
Further information:
http://researchnews.osu.edu/archive/waterage.htm

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>