Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lewis and Clark data show a different Missouri River

11.05.2004


’Strapped in’ by wing dykes


Washington University earth and planetary scientists say the present-day Missouri River is narrower and more prone to flooding because of extensive damming of the river, especially in the 20th century


Lewis and Clark Missouri River data reveal a broader, healthier stream



The oldest data available on the Missouri River - from the logs of Lewis and Clark - show that water flow on the river today is far more variable than it was 200 years ago. The data also show that the river is some 220 yards narrower at St. Charles, Mo., today at 500 yards across than in 1804 when it spread out some 720 yards.

These changes are due to modifications of the river by the Army Corps of Engineers, say Robert Criss, Ph.D., professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, and Washington University undergraduate student Bethany Ehlmann, an earth and planetary sciences major in Arts & Sciences.


Ehlmann presented her and Criss’s findings April 1, 2004 at the 38th annual meeting of the North-Central Section of the Geological Society of America, held in St. Louis.

The emplacement of wing dikes and levees, mostly after World War I, and the building of six main-flow reservoirs between 1937-63 have created a river that Lewis and Clark would not recognize if they were here today. The structures on the river are responsible for a deeper river that is flooding more often in recent years, the researchers say.

"Flood stages are getting higher over time because of restrictions that have made river width narrower," said Criss. "If you make the river narrower to accommodate any given amount of flow, the river’s got to get deeper."

This restriction, Criss said, can be blamed on a four- to nine- foot increase in flood stages along the lower Missouri River. Wing dams, or wing dikes, are found approximately every 1,500 feet along the Missouri River, from outside St. Louis to Sioux City, Iowa, ostensibly for controlling the river for the barge industry.

"The ironic thing is that the Missouri River hardly has any barge traffic; most of that is on the Mississippi," Criss said.

"The whole river is strapped in and the flow is much more variable now than then."

According to Ehlmann, the modern Missouri-Mississippi River confluence near St. Louis shows greater average daily stage change and greater standard deviation - 8.5 /- 14.4 inches at St. Charles and 9.1 /-11.1 inches at St. Louis -- than did the river mouth at Camp Dubois (near St. Louis) in the winter of 1803-04 - 5 inches /- 5.2 inches.

In contrast, she said, at present-day Washburn, North Dakota (Fort Mandan, two hundred years ago), normal daily variability is between 1 to approximately 4 inches compared with an average stage variability of 4.1 /- 7.1 inches when Lewis and Clark made measurements.

A few days, however, show extremely large variability, greater than 20 inches. This, said Ehlmann, is "due to regulation by huge, nearby main stem reservoirs."

The conclusion from Ehlmann and Criss’s study is that "flow regulation by main stem reservoirs and numerous others on tributaries does not fully offset the large increases in flood stages and greater stage variability that are caused by channel restriction and development in the lower basin," according to the researchers.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/840.html

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>