Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lewis and Clark data show a different Missouri River

11.05.2004


’Strapped in’ by wing dykes


Washington University earth and planetary scientists say the present-day Missouri River is narrower and more prone to flooding because of extensive damming of the river, especially in the 20th century


Lewis and Clark Missouri River data reveal a broader, healthier stream



The oldest data available on the Missouri River - from the logs of Lewis and Clark - show that water flow on the river today is far more variable than it was 200 years ago. The data also show that the river is some 220 yards narrower at St. Charles, Mo., today at 500 yards across than in 1804 when it spread out some 720 yards.

These changes are due to modifications of the river by the Army Corps of Engineers, say Robert Criss, Ph.D., professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, and Washington University undergraduate student Bethany Ehlmann, an earth and planetary sciences major in Arts & Sciences.


Ehlmann presented her and Criss’s findings April 1, 2004 at the 38th annual meeting of the North-Central Section of the Geological Society of America, held in St. Louis.

The emplacement of wing dikes and levees, mostly after World War I, and the building of six main-flow reservoirs between 1937-63 have created a river that Lewis and Clark would not recognize if they were here today. The structures on the river are responsible for a deeper river that is flooding more often in recent years, the researchers say.

"Flood stages are getting higher over time because of restrictions that have made river width narrower," said Criss. "If you make the river narrower to accommodate any given amount of flow, the river’s got to get deeper."

This restriction, Criss said, can be blamed on a four- to nine- foot increase in flood stages along the lower Missouri River. Wing dams, or wing dikes, are found approximately every 1,500 feet along the Missouri River, from outside St. Louis to Sioux City, Iowa, ostensibly for controlling the river for the barge industry.

"The ironic thing is that the Missouri River hardly has any barge traffic; most of that is on the Mississippi," Criss said.

"The whole river is strapped in and the flow is much more variable now than then."

According to Ehlmann, the modern Missouri-Mississippi River confluence near St. Louis shows greater average daily stage change and greater standard deviation - 8.5 /- 14.4 inches at St. Charles and 9.1 /-11.1 inches at St. Louis -- than did the river mouth at Camp Dubois (near St. Louis) in the winter of 1803-04 - 5 inches /- 5.2 inches.

In contrast, she said, at present-day Washburn, North Dakota (Fort Mandan, two hundred years ago), normal daily variability is between 1 to approximately 4 inches compared with an average stage variability of 4.1 /- 7.1 inches when Lewis and Clark made measurements.

A few days, however, show extremely large variability, greater than 20 inches. This, said Ehlmann, is "due to regulation by huge, nearby main stem reservoirs."

The conclusion from Ehlmann and Criss’s study is that "flow regulation by main stem reservoirs and numerous others on tributaries does not fully offset the large increases in flood stages and greater stage variability that are caused by channel restriction and development in the lower basin," according to the researchers.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/840.html

More articles from Earth Sciences:

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

nachricht An Atom Trap for Water Dating
28.02.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>