Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plankton may influence climate change says UCSB scientist

06.05.2004


Plankton appear to play a major role in regulating the global climate system, according to new research



David Siegel, professor of geography at the University of California, Santa Barbara, and director of the Institute for Computational Earth System Science, made the discovery with his former Ph.D. student Dierdre Toole, who is now based at Woods Hole Oceanographic Institute.

In an article in the May 6 issue of the journal Geophysical Research Letters, the scientists explain their research in the Sargasso Sea, approximately 50 miles southeast of the island of Bermuda. Siegel’s research group has been making observations at this location since 1992.


Phytoplankton are tiny, single-celled floating plants. They inhabit the upper layers of any natural body of water where there is enough light to support photosynthetic growth. They are the base of the ocean’s food web, and their production helps to regulate the global carbon cycle. They also contribute to the global cycling of many other compounds with climate implications.

One of these compounds is a volatile organic sulfur gas called dimethyl sulfide or DMS. Scientists had previously theorized that DMS is part of a climate feedback mechanism, but until now there had been no observational evidence illustrating how reduced sunlight actually leads to the decreased ocean production of DMS. This is the breakthrough in Toole and Siegel’s research.

They describe how the cycle begins when the ocean gives off DMS to the lower atmosphere. In the air, DMS breaks down into a variety of sulfur compounds that act as cloud-condensing nuclei, leading to increased cloudiness. With more clouds, less sunlight reaches the Earth and the biological processes which produce DMS are reduced.

According to their research, it appears that phytoplankton produce organic sulfur compounds as a chemical defense from the damaging effects of ultraviolet radiation and other environmental stresses, in much the same way as our bodies use vitamins E and C to flush out molecules that cause cellular damage.

Siegel and Toole found that ultraviolet radiation explained almost 90 percent of the variability in the biological production of DMS. They showed that summertime DMS production is "enormous," and that the entire upper layer of DMS content is replaced in just a few days. This demonstrates a tight link between DMS and solar fluxes.

"The significance of this work is that it provides, for the first time, observational evidence showing that the DMS-anti-oxidant mechanism closes the DMS-climate feedback loop," said Siegel. "The implications are huge. Now we know that phytoplankton respond dramatically to UV radiation stresses, and that this response is incredibly rapid, literally just days."

He explained that the findings give new impetus for scientists to re-examine the DMS-climate feedback hypothesis. And the DMS-climate feedback may also play out under possible global warming and climate change scenarios.

As the Earth’s ozone shield thins and greenhouse gases increase, higher ultraviolet radiation will reach the surface layer of the oceans. The findings indicate that phytoplankton will then produce more DMS in response to this increased ultraviolet radiation, causing increasing cloudiness and mitigating the effects of global warming. However, Siegel is careful to note that while the process may mitigate global warming it will not reverse the trend.

The project was funded by NASA. NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.


Note: David Siegel can be reached at 805-893-4547 or by e-mail at davey@icess.ucsb.edu.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>