Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological oceanographers examine ’regime shifts’ in complex marine ecosystems

30.04.2004


"Regime shifts" are infrequent, large changes in oceanic conditions that spread through the food web. Depending on dynamics of the ecosystem, the response of a biological organism to some external forcing can be smooth, abrupt, or discontinuous.



In a paper published in the current issue of Progress in Oceanography, Dr. Jeremy Collie, University of Rhode Island Graduate School of Oceanography, Dr. Katherine Richardson, University of Arhus, Denmark, and Dr. John Steele, Woods Hole Oceanographic Institution, examine the mechanisms that can cause regime shifts in ecosystems and use oceanographic and ecological theory to shed light on the relationships between forcing and response variables.

The focus of the paper is to establish a theoretical basis for the occurrence of regime shifts in the ocean. Our understanding of regime shifts relies on observations of organisms and their marine environment taken on times scales of years and decades. Given the size, scope and interrelatedness of marine ecosystems, experimental manipulation is infeasible. Ecological theory and mathematical models are therefore essential tools for developing this understanding.


Regime shifts can occur, for example, when changes in ocean conditions, such as warming, affect plankton production, an event that easily propagates up the food chain. Changes in ocean conditions can also affect migration patterns, growth rates, and mortality of fish species.

Overfishing a species can also force a regime shift, changing the population dynamics of an entire ecosystem. A regime shift occurred at several levels of the food web in the English coinciding with lower phosphate levels. Other well-documented regime shifts have occurred in the northeast Pacific Ocean and in the North Sea zooplankton populations.

Using diagnostic criteria for regime shifts developed by Scheffer and Carpenter in 2003, Collie, Richardson, and Steele adapted this protocol for examining marine data for the occurrence of regime shifts. The scientists analyzed data on the commercially important haddock stock on Georges Bank off the coast of New England. This 69-year data set indicates that a regime shift in the haddock population occurred in 1965, most likely triggered by high fishing mortality.

"The difficulty in finding marine data that clearly demonstrate the occurrence of regime shifts in the ocean may be that, until recently, major disturbances in the oceans were of natural rather than anthropogenic (man-made) origin and our data collection following such disturbances has been insufficient to identify possible changes in ecosystems," said Collie.

"The assumption that major disturbances or perturbations of marine ecosystems will not result from human activities appears to no longer be valid," added Collie. "Marine ecosystems are increasingly influenced by human perturbations such as fishing, contamination, and the introduction of non-indigenous species. Fishing, in particular, has been identified as having a pervasive impact on marine ecosystems.

"In addition," said Collie, "with man-made induced climate change, we can no longer treat oceanic variability as being purely natural. Thus, there appears to be a very real possibility that anthropogenic activity may be sufficient to substantially perturb ecosystems. If such disturbance does provide the conditions for the occurrence of regime shifts, then understanding and identifying them becomes critical for developing responsible management strategies for the utilization of marine resources."


The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, and the National Sea Grant Library.

Lisa Cugini | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>