Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabed secrets in English clay

26.04.2004


Fossilized organic molecules of green sulfur bacteria are helping to unlock secrets of what may have been a period of helter-skelter climate change and mass kills of sea life during the Jurassic Period some 150-160 million years ago.



The fossils were found in sedimentary rock commonly used to make house bricks in England, quarried from what is called the Oxford Clay Formation.

The findings are reported in the May issue of the journal Geology (now online to subscribers.) Fabien Kenig, associate professor of earth and environmental sciences at the University of Illinois at Chicago, is the article’s lead author. Contributors include John Hudson of the University of Leicester, Jaap Sinninghe Damsté of the Royal Netherlands Institute for Sea Research and Brian Popp of the University of Hawaii.


Kenig and his colleagues have spent almost 15 years trying to learn why the bacteria -- which thrive only in oxygen-free but hydrogen sulfide-rich aquatic environments -- apparently co-existed with ancient, oxygen-breathing sea reptiles and other bottom-dwellers in a shallow part of a sea that’s now the region of east-central England around Peterborough.

"It should have been one or the other," said Kenig. "You can’t have both at the same time. They cannot co-exist."

Using solvents to extract oily lipids from sediments, the geologists identified the signature organic compounds of green sulfur bacteria using gas chromatographs and mass spectrometers.

"Molecules of green sulfur bacteria have a very specific, recognizable pattern or trace that allowed us to identify them in every sample of the Oxford Clay shale that we studied," said Kenig. "We found that their presence was not just an accidental find in a few samples, but corresponds to a recurring, ubiquitous process during deposition of those sediments."

A casual look at a piece of sedimentary rock embedded with fossils suggests a broad-strokes picture of what organisms may have lived in a given epoch of time. Kenig’s samples included seemingly incompatible creatures living together. The standard interpretation of the fossil record needed some refinement.

"The animal fossils and bacteria organic matter, though contained in the same packet of rock, were not deposited at the same time," he said. "There was the deposition of organic matter and clay during one set of environmental conditions, then when conditions changed and became favorable, different organisms colonized the environment and left their remains, some as a result of a mass kill by the next anoxic -- or complete lack of oxygen -- event."

"There are indications that conditions in the Oxford Clay-sea were extremely dynamic at the time, probably in response to climatic changes," said Kenig.

The finding suggests that use of fossils to reconstruct environmental records of the past needs to be interpreted with greater care because details from sedimentary deposits, as Kenig and his colleagues found, suggest that these fossils may only represent end-member environments.


The research was supported by grants from the National Science Foundation and the National Environmental Research Council.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>