Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabed secrets in English clay

26.04.2004


Fossilized organic molecules of green sulfur bacteria are helping to unlock secrets of what may have been a period of helter-skelter climate change and mass kills of sea life during the Jurassic Period some 150-160 million years ago.



The fossils were found in sedimentary rock commonly used to make house bricks in England, quarried from what is called the Oxford Clay Formation.

The findings are reported in the May issue of the journal Geology (now online to subscribers.) Fabien Kenig, associate professor of earth and environmental sciences at the University of Illinois at Chicago, is the article’s lead author. Contributors include John Hudson of the University of Leicester, Jaap Sinninghe Damsté of the Royal Netherlands Institute for Sea Research and Brian Popp of the University of Hawaii.


Kenig and his colleagues have spent almost 15 years trying to learn why the bacteria -- which thrive only in oxygen-free but hydrogen sulfide-rich aquatic environments -- apparently co-existed with ancient, oxygen-breathing sea reptiles and other bottom-dwellers in a shallow part of a sea that’s now the region of east-central England around Peterborough.

"It should have been one or the other," said Kenig. "You can’t have both at the same time. They cannot co-exist."

Using solvents to extract oily lipids from sediments, the geologists identified the signature organic compounds of green sulfur bacteria using gas chromatographs and mass spectrometers.

"Molecules of green sulfur bacteria have a very specific, recognizable pattern or trace that allowed us to identify them in every sample of the Oxford Clay shale that we studied," said Kenig. "We found that their presence was not just an accidental find in a few samples, but corresponds to a recurring, ubiquitous process during deposition of those sediments."

A casual look at a piece of sedimentary rock embedded with fossils suggests a broad-strokes picture of what organisms may have lived in a given epoch of time. Kenig’s samples included seemingly incompatible creatures living together. The standard interpretation of the fossil record needed some refinement.

"The animal fossils and bacteria organic matter, though contained in the same packet of rock, were not deposited at the same time," he said. "There was the deposition of organic matter and clay during one set of environmental conditions, then when conditions changed and became favorable, different organisms colonized the environment and left their remains, some as a result of a mass kill by the next anoxic -- or complete lack of oxygen -- event."

"There are indications that conditions in the Oxford Clay-sea were extremely dynamic at the time, probably in response to climatic changes," said Kenig.

The finding suggests that use of fossils to reconstruct environmental records of the past needs to be interpreted with greater care because details from sedimentary deposits, as Kenig and his colleagues found, suggest that these fossils may only represent end-member environments.


The research was supported by grants from the National Science Foundation and the National Environmental Research Council.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>