Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rate of ocean circulation directly linked to abrupt climate change

23.04.2004


A new study strengthens evidence that the oceans and climate are linked in an intricate dance, and that rapid climate change may be related to how vigorously ocean currents transport heat from low to high latitudes.



A new study, reported April 22 in the journal Nature, suggests that when the rate of the Atlantic Ocean’s north-south overturning circulation slowed dramatically following an iceberg outburst during the last deglaciation, the climate in the North Atlantic region became colder. When the rate of the ocean’s overturning circulation subsequently accelerated, the climate warmed abruptly.

Study author Jerry McManus and colleagues Roger Francois, Jeanne Gherardi, Lloyd Keigwin and Susan Brown-Leger at the Woods Hole Oceanographic Institution and in France report that the coldest interval of the last 20,000 years occurred when the overturning circulation collapsed following the discharge of icebergs into the North Atlantic 17,500 years ago. This regional climatic extreme began suddenly and lasted for two thousand years. Another cold snap 12,700 years ago lasting more than a thousand years and accompanied another slowdown of overturning circulation. Each of these two cold intervals was followed by a rapid acceleration of the overturning circulation and dramatically warmer climates over Northern Europe and the North Atlantic region.


McManus and colleagues studied a seafloor sediment core from the subtropical North Atlantic that was retrieved from an area known as the Bermuda Rise. The core contains sediments deposited over tens of thousands of years that include shells of small animals called foraminifera that record surface water conditions in their shells when alive. The researchers measured oxygen isotope ratios in each individual sandgrain-sized shell to determine climatic changes that occurred since the last ice age. They used a new tool, based on two daughter isotopes of uranium that occur naturally in seawater, as a proxy for changes in the rate of ocean circulation. The technique has been used for other purposes in the past, but this is the first time it has been used to generate a detailed time series that provides a history of variations in the strength of ocean circulation.

The isotopes, protactinium and thorium, are produced at constant rates in seawater by radioactive decay from dissolved uranium and are removed quickly by adhering to particles settling to the ocean floor. Thorium is removed so rapidly by particles that it resides in the water column no more than a few decades before nearly all of it is buried on the sea floor below where it was produced. Protactinium is removed less readily and thus remains in the water column 100 to 200 years. As a result, about half of the protactinium produced in North Atlantic water today is exported into the Southern Ocean as part of the ocean circulation system known as the great conveyor. At times when the rate of overturning circulation slows, the proportion of protactinium buried in the North Atlantic sediments increases, thus preserving the record of such changes in the accumulating sediments.

The research team found that the rate of ocean circulation varied remarkably following the last ice age, with strong reductions and abrupt reinvigorations closely tied to regional climate changes. McManus says this is the best demonstration to date of what many paleoclimatologists and ocean scientists have long suspected. "Strong overturning circulation leads to warm conditions in the North Atlantic region, and weak overturning circulation leads to cold conditions," he said. "We’ve known for some time from changes in the chemistry of the seawater itself that something was different about the ocean’s circulation at times of rapid climate changes, and it now appears that the difference was related to changes in the rate of ocean circulation. One big question is why the circulation would collapse in the first place and possibly trigger abrupt climate change. We think it is the input of fresh water to the surface ocean at a particularly sensitive location."

McManus says the team is now applying this same technique to sea floor cores collected in other regions of the North Atlantic. "We’ve made a little step forward in understanding the ocean’s role in the climate puzzle, but there are more pieces to fill in."


The WHOI study was funded by the National Science Foundation, the Institution’s Ocean and Climate Change Institute and an Interdisciplinary and Independent Study Award, and by the Comer Science and Education Foundation.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>