Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Classic view wrong, scientists say, huge pots of magma not brewing under most volcanoes

21.04.2004


About 75,000 years ago, some scientists say, the last truly colossal volcanic eruption on Earth came close to wiping out all the primates, including humans. That eruption occurred when the Toba volcano in Indonesia exploded in an almost unbelievably shattering display.



Other people with a flare for the dramatic warn that a supervolcano underlying Yellowstone National Park could erupt in the not-so-distant future and push humanity to the verge of extinction. University of North Carolina at Chapel Hill scientists say not to worry, especially anytime soon.

"It’s not hyperbole to say that the biggest eruptions could bring an end to civilization," said Dr. Allen F. Glazner, professor of geologic sciences at UNC. "Such eruptions are evident in the geologic record, and the classic textbook picture of volcanoes implies that huge pots of magma are brewing under most active volcanoes today."


Happily, that traditional view is wrong, according to Glazner’s latest research -- work conducted jointly with UNC assistant geology professor Dr. Drew S. Coleman and Dr. John M. Bartley of the University of Utah.

In two studies appearing in April issue of GSA Today and the May issue of Geology, the scientists present new insights into the potential for volcanoes to produce gigantic eruptions -- explosions thousands of times larger than the 1980 eruption of Mount Saint Helens.

"Although evidence for such massive eruptions is found throughout the geologic record, our investigation of magmas frozen below long-extinct volcanoes in California’s Sierra Nevada led us to conclude that the largest eruptions are significantly less likely than many people believed," Glazner said.

In their investigation, team members studied magma bodies that cooled beneath the land’s surface. Those bodies, called "plutons" after Pluto, the Greek god of the underworld, are the chief building blocks of the Earth’s crust, he said. Vast pieces of formerly molten rock, they contain many known rock and mineral resources.

"Much of Chapel Hill, for example, lies on the Chapel Hill Granite pluton and its associated volcanic rocks," the geologist said. "Most scientists picture plutons as solidifying from enormous underground blobs of molten rock known as magma that feed overlying volcanoes."

Typically, plutons are hundreds to thousands of cubic kilometers in volume. For that reason, geologists long assumed that huge stores of magma are commonplace active volcanoes, Glazner said. They also reasoned that the potential for truly catastrophic eruptions exists in many volcanically active areas.

"Our new work casts doubt on the assumption that gigantic eruptions should be relatively common," he said.

Glazner, Coleman and Bartley combined observations of the deep Earth provided by seismic waves produced during earthquakes with mathematical modeling of magma cooling and precise dating and field mapping Sierra Nevada plutons.

Because small percentages of liquid in a rock slow seismic waves dramatically, the waves are sensitive probes for the tiniest volumes of molten rock, Glazner said.

"However, even under active volcanoes, seismic waves show little evidence for big blobs of magma," Coleman said. "Our mathematical models indicate that if big magma chambers existed, they should solidify in less than a million years, but new high-precision age determinations completed here at UNC indicate that plutons can take up to 10 million years to form."

New field mapping demonstrated that plutons once thought to be thousands of cubic kilometers of homogeneous rock that cooled from a single magma reservoir preserve subtle evidence of a much slower, piecemeal assembly, he said.

The results suggest that plutons are likely to be built by a multitude of small molten intrusions over millions of years and that plutons are not like a closed can of food waiting to explode when heated, Coleman said.

"We conclude that volcanoes are more prone to chugging along, producing many small -- though still dangerous -- eruptions such as the 1980 eruption of Mount Saint Helens, rather than huge civilization-destroying eruptions," he said.

Former UNC College of Arts and Sciences students Walt Gray and Ryan Z. Taylor, now with the Southwest Research Institute and the U.S. Forest Service, respectively, contributed to the new work. The National Science Foundation supported it.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>