Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nighttime Chemistry Affects Ozone Formation

13.04.2004

When it comes to air pollution, what goes on at night can be just as important as what happens during the day, say National Oceanic and Atmospheric Administration (NOAA) scientists and their colleagues in a study published 10 April in Geophysical Research Letters.

The scientists found that nighttime chemical processes remove nitrogen oxides (NOx) from the atmosphere in the marine boundary layer off the coast of New England. These gases are one of the two basic ingredients for making ozone pollution. With less nitrogen oxides in the atmosphere, ozone production the next day will almost always be reduced in New England. Ozone is a strong oxidant and can lead to respiratory problems in humans, as well as affect plant life.

Lead author Steven S. Brown and many of his co-authors are at NOAA’s Aeronomy Laboratory and NOAA’s Cooperative Institute for Research in Environmental Sciences (CIRES) in Boulder, Colorado. Scientists at the NOAA Pacific Marine Environmental Laboratory, the University of New Hampshire, and the University of Colorado also participated in the study.

Ozone forms in the presence of sunlight from chemical reactions between hydrocarbons (also known as volatile organic compounds, or VOCs) and nitrogen oxides, both of which are emitted by human activities such as fossil-fuel burning, as well as by natural sources. Most studies have focused on the daytime processes associated with ozone pollution.

But, Brown notes, "Atmospheric chemistry never sleeps" and more information is needed about nighttime chemistry. After sunset, nitrogen oxide compounds undergo reactions that make two new nitrogen-containing gases that exist mainly at night. These "nocturnal nitrogen oxides" have the potential to either remove nitrogen from the atmosphere or to store it and re-release it when daylight returns--two possibilities that have vastly different consequences for subsequent ozone formation.

The authors studied the two nocturnal gases, known chemically as nitrate radical (NO3) and dinitrogen pentoxide (N2O5). The gases had been previously either impossible to measure (dinitrogen pentoxide) or measurable only over a large volume of air (nitrate radical). A new capability recently applied by Brown and his colleagues has made it possible to measure each gas in a small volume of sampled air. The scientists got their first look at the nighttime chemistry during the summer of 2002, when the new instrument was deployed off the coast of New England on the NOAA Research Vessel Ronald H. Brown, as part of an air quality study of the region.

They found that the nocturnal gases effectively removed nitrogen oxides from the atmosphere by forming nitric acid, a gas that rapidly deposits to the surface in the marine environment that the scientists investigated. The net result is that the nitrogen oxides that are thus removed can no longer participate in ozone-forming chemistry the next day. Scientists at the University of New Hampshire provided key measurements of the nitric acid during the study.

"This nighttime process takes out about as much as daytime processes. Under nearly all polluted conditions, this will short-circuit some of the ozone production that would have occurred the next day in New England," Brown says.

The result is important to include in air quality models of the region, because it affects the amount of ozone that is expected to form per unit of nitrogen oxide pollution. New nighttime processes are a "must-have" for air quality forecasts and simulations in New England, and perhaps other areas, the researchers say.

"The nighttime chemistry is a new piece of the air quality puzzle. We need to find out more about when and where it is important, so that we will be able to provide more accurate predictions of ozone pollution for the public," said A.R. Ravishankara, a co-author of the study at NOAA’s Aeronomy Laboratory.

The research was funded by the New England Air Quality Study and NOAA.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>