Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moss Landing Researchers reveal iron as key to climate change

19.04.2004


Trace metal rosette recovery aboard R/V Melville
Credit: Kenneth Coale-MLML


A remarkable expedition to the waters of Antarctica reveals that iron supply to the Southern Ocean may have controlled Earth’s climate during past ice ages. A multi-institutional group of scientists, led by Dr. Kenneth Coale of Moss Landing Marine Laboratories (MLML) and Dr. Ken Johnson of the Monterey Bay Aquarium Research Institute (MBARI), fertilized two key areas of the Southern Ocean with trace amounts of iron. Their goal was to observe the growth and fate of microscopic marine plants (phytoplankton) under iron-enriched conditions, which are thought to have occurred in the Southern Ocean during past ice ages. They report the results of these important field experiments (known as SOFeX, for Southern Ocean Iron Enrichment Experiments) in the April 16, 2004 issue of Science.

Previous studies have suggested that during the last four ice ages, the Southern Ocean had large phytoplankton populations and received large amounts of iron-rich dust, possibly blown out to sea from expanding desert areas. In order to simulate such ice-age conditions, the SOFeX scientists added iron to surface waters in two square patches, each 15 kilometers on a side, so that concentrations of this micronutrient reached about 50 parts per trillion. This concentration, though low by terrestrial standards, represented a 100-fold increase over ambient conditions, and triggered massive phytoplankton blooms at both locations. These blooms covered thousands of square kilometers, and were visible in satellite images of the area.

Each of these blooms consumed over 30,000 tons of carbon dioxide, an important greenhouse gas. Of particular interest to the scientists was whether this carbon dioxide would be returned to the atmosphere or would sink into deep waters as the phytoplankton died or were consumed by grazers. Observations by Dr. Ken Buesseler of Woods Hole Oceanographic Institution and Dr. Jim Bishop of Lawrence Berkeley National Laboratories (reported separately in the same issue of Science) indicate that much of the carbon sank to hundreds of meters below the surface. When extrapolated over large portions of the Southern Ocean, this finding suggests that iron fertilization could cause billions of tons of carbon to be removed from the atmosphere each year. Removal of this much carbon dioxide from the atmosphere could have helped cool the Earth during ice ages. Similarly, it has been suggested that humans might be able to slow global warming by removing carbon dioxide from the atmosphere through a massive ocean fertilization program.



Unlike previous iron fertilization experiments, SOFeX focused on the two different parts of the Southern Ocean to determine if the iron-induced blooms would be influenced by variations in silicic acid concentrations. Silicic acid is essential to the growth of diatoms, a common type of phytoplankton. The southern part of the Southern Ocean typically has an abundance of silicic acid but the northern part often has very low levels. The results of this experiment indicate that even where silicic acid levels are low, iron fertilization can result in blooms of phytoplankton such as dinoflagellates and prymneseophytes, which do not require silicon for growth yet still consume vast amounts of carbon dioxide. This finding has doubled the area of the Southern Ocean that scientists believe could be important for carbon cycling.

The SOFeX experiment was carried out during January and February of 2002, after a decade of planning and preparation, and was funded by the US National Science Foundation and the US Department of Energy. It involved two US research vessels from Scripps Institution of Oceanography and one US Coast Guard research ice-breaker, as well as about 100 scientists from at least eighteen different research institutions. This important experiment is covered in three research articles in the April 16 issue of Science, and is featured on the magazine’s cover.

Research article citation:

Kenneth H. Coale, et al. Southern ocean iron enrichment experiment: carbon cycling in high-and low-Si waters. Science. Vol. 304 #5669 (April 16, 2004).

Media contacts:

Dr. Kenneth Coale, Moss Landing Marine Laboratories (831) 771-4406; coale@mlml.calstate.edu

Kim Fulton-Bennett, Communications Associate, Monterey Bay Aquarium Research Institute, (831) 775-1835; kfb@mbari.org

Lisa Uttal | MLML
Further information:
http://www.mlml.calstate.edu/news/newsdetail.php?id=34

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>