Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paleontologists Use Computer to "Morph" Deformed Fossils Back to Their Original Shapes

07.04.2004


It’s bad enough that fossils, buried deep in layers of rock for thousands or millions of years, may be damaged or missing pieces, but what really challenges paleontologists, according to University at Buffalo researchers, is the amount of deformation that most fossils exhibit.



That’s why Tammy Dunlavey, a master’s degree candidate in the Department of Geology in the UB College of Arts and Sciences, and her colleagues are working on a computational method to morph fossils back to their original shapes by calculating and excising the deformation.

"Our goal is to develop computer programs that can reliably solve the deformation problem," noted Dunlavey, who on April 1 presented research on a new suite of "retrodeformation" programs at a Geological Society of America meeting (North-Central section) in St. Louis.


The main program is called "MsWellman," written by the UB researchers in collaboration with H. David Sheets, Ph.D., professor of physics at Canisius College and adjunct associate professor of geology at UB.

MsWellman adapts an approach developed by a structural geologist named Wellman, and works on multiple rock slabs at once.

"Fossils are deformed because they are fossils," said Dunlavey.

Deformation makes the prospect of gleaning from fossils important data about ancient worlds that much more difficult, according to Charles E. Mitchell, Ph.D., professor and chair of the UB geology department, with whom Dunlavey is collaborating.

While paleontologists traditionally have tried to concentrate on the rare, well-preserved fossils for which deformation is not a significant issue, they increasingly are interested in the many fossils that clearly have been deformed.

"The question our computer program is designed to address isn’t, ’Are fossils deformed,’ but rather ’By how much?’" said Dunlavey, noting that millions of years of being buried causes different levels of deformation in fossils.

According to the UB researchers, MsWellman calculates the degree and form of the deformation and then a second program the UB team developed called Retrodef6, uses this understanding to "correct" a representation of the deformed fossil back to its original form.

"We wanted to design a methodology that determines at what point, statistically, fossils can be considered deformed and calculates the amount of deformation based on how much strain they were subject to when embedded in rock, as well as other variables," she said. "The program then will restore the virtual fossils to their original shape."

To do that, the UB scientists employed a technique called geometric morphometrics, which documents aspects of shape and size in a specimen based on landmarks, discrete anatomical points that generally are uniform for related specimens.

For example, Dunlavey explained, one might consider the eyes in a human face as a landmark feature, and, since human faces are expected to be bilaterally symmetric, the right eye is expected to be located on the opposite side of the face at the same height as the left one.

In the same way, she said, many fossils are expected to be bilaterally symmetric in their original form, a concept that is a key premise of the UB computer programs.

To gauge the reliability of the new retrodeformation programs, Dunlavey used several fossils of graptolites, which are the remains of an extinct group of marine organisms.

The fossils Dunlavey used lived during the Middle Ordovician Period, some 472 million years ago, before land animals or large land plants had evolved.

Since graptolites were common and evolved rapidly, Mitchell explained, they tend to be useful markers for constructing a timescale in the Ordovician period.

Because their original shape is well-known, he continued, several sets of deformed, slightly deformed and non-deformed graptolites served as an excellent test case for the new computer programs.

So far, the type of deformation the UB team has excised from these specimens is what geologists call structural deformation, changes in the earth’s crust that occur over many millions of years during mountain building.

During their research, the UB researchers discovered that a significant amount of deformation also occurs from the hardening of the soft mud the organisms were buried in, which flattened the fossils, producing asymmetry.

"First these fossils were squashed during this hardening process and then they were smeared during mountain building," explained Mitchell.

The team plans to apply its computational techniques to both types of deformation to develop methods that will provide the clearest view of what the fossils looked like when they were still living inhabitants of Earth’s ancient oceans.

Ellen Goldbaum | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=66490009

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>