Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Fossil Links Four-legged Land Animals to Ancient Fish

02.04.2004


Sketch depicts limb bone, which bridges the evolutionary gap between fishes and amphibians.
Credit: Neil Shubin, University of Chicago

How land-living animals evolved from fish has long been a scientific puzzle. A key missing piece has been knowledge of how the fins of fish transformed into the arms and legs of our ancestors. In this week’s issue of the journal Science, paleontologists Neil Shubin and Michael Coates from the University of Chicago and Ted Daeschler from the Academy of Natural Sciences in Philadelphia, describe a remarkable fossil that bridges the gap between fish and amphibian and provides a glimpse of the structure and function changes from fin to limb.

The fossil, a 365-million-year-old arm bone, or humerus, shares features with primitive fish fins but also has characteristics of a true limb bone. Discovered near a highway roadside in north central Penn., the bone is the earliest of its kind from any limbed animal.

"It has long been understood that the first four-legged creatures on land arose from the lobed-finned fishes in the Devonian Period," said Rich Lane, director of the National Science Foundation’s (NSF) geology and paleontology program. "Through this work, we’ve learned that fish developed the ability to prop their bodies through modification of their fins, leading to the emergence of tetrapod limbs."

NSF, the independent federal agency that supports fundamental research and education across all fields of science and engineering, funded the research.

The bone’s structure reveals an animal that had powerful forelimbs, with extensive areas for the attachment of muscles at the shoulder. "The size and extent of these muscles means that the humerus played a significant role in the support and movement of the animal," reported Shubin. "These muscles would have been important in propping the body up and pushing it off of the ground."

Interestingly, modern-day fish have smaller versions of the muscles. According to Coates, "When this humerus is compared to those of closely-related fish, it becomes clear that the ability to prop the body is more ancient than we previously thought. This means that many of the features we thought evolved to allow for life on land originally evolved in fish living in aquatic ecosystems."

The layered rock along the Clinton County, Penn., roadside were deposited by ancient stream systems that flowed during the Devonian Period, about 365 million years ago. Enclosed in the rocks is fossil evidence of an ecosystem teeming with plant and animal life. "We found a number of interesting fossils at the site," reported Daeschler, who uncovered the fossil in 1993. "But the significance of this specimen went unnoticed for several years because only a small portion of the bone was exposed and most of it lay encased in a brick-sized piece of red sandstone."

Not until three years ago, when Fred Mullison, the fossil preparator at the Academy of Natural Sciences, excavated the bone from the rock, did the importance of the new specimen become evident.

The work was also funded by a grant from the National Geographic Society.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html
http://www.nsf.gov/od/lpa/newsroom/pr.cfm?ni=63

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>