Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How minerals react in the environment depends on particle size

31.03.2004


One of the most common groups of minerals on earth is the iron oxides, found in soils, rusting iron, and the dust of Mars.



Due to their importance in the environment, iron oxide minerals have been widely studied, providing insight into their properties and reactivities. But when the size of minerals decreases to 1 to 10 nanometers (billionths of a meter), many of their properties change. Andrew Madden of Blacksburg, a Ph.D. student in geosciences at Virginia Tech, will report on the nanoscale properties of iron oxide at the 227th national meeting of the American Chemical Society, being held in Anaheim, Calif., March 28 through April 1, 2004.

"Geoscientists now recognize that there are small particles in our environment, but we don’t know their properties at the nanoscale," says Madden. He is doing his experiments using hematite, the same iron oxide associated with Mars.


He is studying the reaction between dissolved manganese and oxygen, a process known as manganese oxidation. The rate of the reaction is greatly enhanced by minerals such as hematite. This process is responsible for removing dissolved manganese from water and forming manganese oxide minerals, which are extremely important in adsorbing and transforming a variety of pollutants, such as lead, nickel, cobalt, and pesticides.

Manganese is everywhere – in soils, rivers, oceans, and lakes – and its oxidation depends upon the solid with which it interacts. How is this interaction different at the nanoscale? So far, Madden has found that nanoparticles are 30 times more efficient at promoting the manganese oxidation reaction than the same material in bulk.

One consequence of the research is the questioning of a long-held assumption about manganese oxidation – that the process requires bacteria because it is much slower in the absence of bacteria. But maybe it is particle size and not bacteria that influences the speed of the process in some environments.

"Reactivity is controlled by the electrons and electronic structure of the particles, which changes as the particle gets smaller," Madden explains. In a smaller hunk of matter, more of the atoms are at the surface. In the research circumstances, the iron oxide gave up electrons to the manganese, making them more susceptible to reaction with dissolved oxygen.

Madden says he can’t say yet what might happen as a result of such interactions. "We expect to synthesize smaller particles and see an even more efficient reaction."

Madden will present the paper, "Testing geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles (GEOC 92)" at 5:30 p.m. Tuesday, March 30, at the Marriott -- Marquis NW as the last presentation of the symposium on Interfacial Phenomena: Linking Atomistic and Macroscopic Properties, Co-author is Virginia Tech professor of geosciences Michael F. Hochella Jr.

Madden is a member of the Hochella NanoGeoscience and mineral-microbe research group. He became a Ph.D. candidate in geosciences in fall 2000 and was awarded a National Science Foundation fellowship in 2001. His undergraduate degree is from Michigan State University, and he worked at Dart Oil and Gas in Mason, Mich., while at MSU.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>