Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How minerals react in the environment depends on particle size

31.03.2004


One of the most common groups of minerals on earth is the iron oxides, found in soils, rusting iron, and the dust of Mars.



Due to their importance in the environment, iron oxide minerals have been widely studied, providing insight into their properties and reactivities. But when the size of minerals decreases to 1 to 10 nanometers (billionths of a meter), many of their properties change. Andrew Madden of Blacksburg, a Ph.D. student in geosciences at Virginia Tech, will report on the nanoscale properties of iron oxide at the 227th national meeting of the American Chemical Society, being held in Anaheim, Calif., March 28 through April 1, 2004.

"Geoscientists now recognize that there are small particles in our environment, but we don’t know their properties at the nanoscale," says Madden. He is doing his experiments using hematite, the same iron oxide associated with Mars.


He is studying the reaction between dissolved manganese and oxygen, a process known as manganese oxidation. The rate of the reaction is greatly enhanced by minerals such as hematite. This process is responsible for removing dissolved manganese from water and forming manganese oxide minerals, which are extremely important in adsorbing and transforming a variety of pollutants, such as lead, nickel, cobalt, and pesticides.

Manganese is everywhere – in soils, rivers, oceans, and lakes – and its oxidation depends upon the solid with which it interacts. How is this interaction different at the nanoscale? So far, Madden has found that nanoparticles are 30 times more efficient at promoting the manganese oxidation reaction than the same material in bulk.

One consequence of the research is the questioning of a long-held assumption about manganese oxidation – that the process requires bacteria because it is much slower in the absence of bacteria. But maybe it is particle size and not bacteria that influences the speed of the process in some environments.

"Reactivity is controlled by the electrons and electronic structure of the particles, which changes as the particle gets smaller," Madden explains. In a smaller hunk of matter, more of the atoms are at the surface. In the research circumstances, the iron oxide gave up electrons to the manganese, making them more susceptible to reaction with dissolved oxygen.

Madden says he can’t say yet what might happen as a result of such interactions. "We expect to synthesize smaller particles and see an even more efficient reaction."

Madden will present the paper, "Testing geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles (GEOC 92)" at 5:30 p.m. Tuesday, March 30, at the Marriott -- Marquis NW as the last presentation of the symposium on Interfacial Phenomena: Linking Atomistic and Macroscopic Properties, Co-author is Virginia Tech professor of geosciences Michael F. Hochella Jr.

Madden is a member of the Hochella NanoGeoscience and mineral-microbe research group. He became a Ph.D. candidate in geosciences in fall 2000 and was awarded a National Science Foundation fellowship in 2001. His undergraduate degree is from Michigan State University, and he worked at Dart Oil and Gas in Mason, Mich., while at MSU.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>