Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How minerals react in the environment depends on particle size

31.03.2004


One of the most common groups of minerals on earth is the iron oxides, found in soils, rusting iron, and the dust of Mars.



Due to their importance in the environment, iron oxide minerals have been widely studied, providing insight into their properties and reactivities. But when the size of minerals decreases to 1 to 10 nanometers (billionths of a meter), many of their properties change. Andrew Madden of Blacksburg, a Ph.D. student in geosciences at Virginia Tech, will report on the nanoscale properties of iron oxide at the 227th national meeting of the American Chemical Society, being held in Anaheim, Calif., March 28 through April 1, 2004.

"Geoscientists now recognize that there are small particles in our environment, but we don’t know their properties at the nanoscale," says Madden. He is doing his experiments using hematite, the same iron oxide associated with Mars.


He is studying the reaction between dissolved manganese and oxygen, a process known as manganese oxidation. The rate of the reaction is greatly enhanced by minerals such as hematite. This process is responsible for removing dissolved manganese from water and forming manganese oxide minerals, which are extremely important in adsorbing and transforming a variety of pollutants, such as lead, nickel, cobalt, and pesticides.

Manganese is everywhere – in soils, rivers, oceans, and lakes – and its oxidation depends upon the solid with which it interacts. How is this interaction different at the nanoscale? So far, Madden has found that nanoparticles are 30 times more efficient at promoting the manganese oxidation reaction than the same material in bulk.

One consequence of the research is the questioning of a long-held assumption about manganese oxidation – that the process requires bacteria because it is much slower in the absence of bacteria. But maybe it is particle size and not bacteria that influences the speed of the process in some environments.

"Reactivity is controlled by the electrons and electronic structure of the particles, which changes as the particle gets smaller," Madden explains. In a smaller hunk of matter, more of the atoms are at the surface. In the research circumstances, the iron oxide gave up electrons to the manganese, making them more susceptible to reaction with dissolved oxygen.

Madden says he can’t say yet what might happen as a result of such interactions. "We expect to synthesize smaller particles and see an even more efficient reaction."

Madden will present the paper, "Testing geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles (GEOC 92)" at 5:30 p.m. Tuesday, March 30, at the Marriott -- Marquis NW as the last presentation of the symposium on Interfacial Phenomena: Linking Atomistic and Macroscopic Properties, Co-author is Virginia Tech professor of geosciences Michael F. Hochella Jr.

Madden is a member of the Hochella NanoGeoscience and mineral-microbe research group. He became a Ph.D. candidate in geosciences in fall 2000 and was awarded a National Science Foundation fellowship in 2001. His undergraduate degree is from Michigan State University, and he worked at Dart Oil and Gas in Mason, Mich., while at MSU.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>