Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How minerals react in the environment depends on particle size

31.03.2004


One of the most common groups of minerals on earth is the iron oxides, found in soils, rusting iron, and the dust of Mars.



Due to their importance in the environment, iron oxide minerals have been widely studied, providing insight into their properties and reactivities. But when the size of minerals decreases to 1 to 10 nanometers (billionths of a meter), many of their properties change. Andrew Madden of Blacksburg, a Ph.D. student in geosciences at Virginia Tech, will report on the nanoscale properties of iron oxide at the 227th national meeting of the American Chemical Society, being held in Anaheim, Calif., March 28 through April 1, 2004.

"Geoscientists now recognize that there are small particles in our environment, but we don’t know their properties at the nanoscale," says Madden. He is doing his experiments using hematite, the same iron oxide associated with Mars.


He is studying the reaction between dissolved manganese and oxygen, a process known as manganese oxidation. The rate of the reaction is greatly enhanced by minerals such as hematite. This process is responsible for removing dissolved manganese from water and forming manganese oxide minerals, which are extremely important in adsorbing and transforming a variety of pollutants, such as lead, nickel, cobalt, and pesticides.

Manganese is everywhere – in soils, rivers, oceans, and lakes – and its oxidation depends upon the solid with which it interacts. How is this interaction different at the nanoscale? So far, Madden has found that nanoparticles are 30 times more efficient at promoting the manganese oxidation reaction than the same material in bulk.

One consequence of the research is the questioning of a long-held assumption about manganese oxidation – that the process requires bacteria because it is much slower in the absence of bacteria. But maybe it is particle size and not bacteria that influences the speed of the process in some environments.

"Reactivity is controlled by the electrons and electronic structure of the particles, which changes as the particle gets smaller," Madden explains. In a smaller hunk of matter, more of the atoms are at the surface. In the research circumstances, the iron oxide gave up electrons to the manganese, making them more susceptible to reaction with dissolved oxygen.

Madden says he can’t say yet what might happen as a result of such interactions. "We expect to synthesize smaller particles and see an even more efficient reaction."

Madden will present the paper, "Testing geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles (GEOC 92)" at 5:30 p.m. Tuesday, March 30, at the Marriott -- Marquis NW as the last presentation of the symposium on Interfacial Phenomena: Linking Atomistic and Macroscopic Properties, Co-author is Virginia Tech professor of geosciences Michael F. Hochella Jr.

Madden is a member of the Hochella NanoGeoscience and mineral-microbe research group. He became a Ph.D. candidate in geosciences in fall 2000 and was awarded a National Science Foundation fellowship in 2001. His undergraduate degree is from Michigan State University, and he worked at Dart Oil and Gas in Mason, Mich., while at MSU.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>