Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative study clarifies evolutionary history of early complex single-celled organisms

29.03.2004


A billion years ago (the Neoproterozoic age), complex single-celled organisms, the acritarchs, began to develop, grow, and thrive. Almost a billion years later, the study of the evolutionary history of acritarchs began to bog down amid inconsistencies in the reporting of the diversity of species. Now, a Virginia Tech graduate student has devised a new way to study the ebb and flow of life in the Neoproterozoic and Early Cambrian ages, a period that includes two mass extinctions.



John Warren Huntley of Asheville, N.C., a PhD. student in geosciences, will report on his strategy and results at the joint meeting of the Northeastern and Southeastern Sections of the Geological Society of America, to be held March 25-27 in Tysons Corner, Va.

"The evolutionary history of acritarchs reported in the literature has been based on the number of species," explains Huntley. "But there have been many workers collecting information and there is variation among these researchers on what is considered a species. This variation among workers could alter our understanding of what actually happened."


The strategy of a group of geoscientists at Virginia Tech is to use the quantitative data reported in the scientific literature to look at size and morphological complexity of specimens collected. So far, they have examined acritarch data spanning more than 700 million years – from 1270-million-year-old rocks deposited long before Neoproterozoic ice ages, to Early Cambrian successions rocks deposited during the explosive evolution of early animals.

"Our preliminary results seem to confirm previous anecdotal evidence," says Huntley. "We’re finding that complexity increases through time, which is to be expected." However, complexity leveled off. "It appears that morphological complexity may have remained steady at high values, even when species diversity was fluctuating greatly," Huntley says.

As to size, there was a steady increase in size for at least 500 million years, until the Ediacaran extinction, after which acritarchs remained very small compared to their pre-Ediacaran extinction size. "There had been anecdotal observations of the size change, which we have now quantified," Huntley says.

Huntley will present the paper, "Secular patterns in morphological disparity and body size of acritarchs through the Neoproterozoic and early Cambrian" (47-2) at 1:20 p.m. Friday, March 26, as part of the session on Pre-Cenozoic Paleontology in the Gunston A room at the Hilton McLean-Tysons Corner hotel. Co-authors are Virginia Tech geosciences professors Shuhai Xiao and Michal Kowalewski.

The trio began their study of acritarchs last October. "It is interesting to use novel techniques to study early life and this is a good opportunity to increase my knowledge in this important area, " says Huntley, who has been studying mollusk evolution.

Huntley received his bachelor’s degree from Appalachian State University and his master’s degree from the University of North Carolina at Wilmington.


Contact for more information:
John Warren Huntley, 540-231-1913 or jhuntley@vt.edu
Michal Kowalewski (Huntley’s major professor) michalk@vt.edu 540-231-5951
Shuhai Xiao, xiao@vt.edu, 540-231-1366

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>