Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A picture is worth a thousand miles not traveled to measure the fossil of an ancient sea creature

29.03.2004


The body size of ancient creatures, bivalves and brachiopods, could tell geoscientists a lot about the creatures’ life history and about the ecology of the times in which they lived. However, traveling the world to measure these creatures’ fossils would take several life-times and more travel funds than scientists usually have.

Since the same creatures have also become abundant in scientific literature since the mid 1800s, a team of Virginia Tech researchers is determining whether measuring photos of fossils collected worldwide would be a reliable way to compile body size data. Richard A. Krause Jr. of Greenfield, Wis., a PhD. student in the Department of Geosciences at Virginia Tech, will report on his assessment of this nontraditional approach at the joint meeting of the Northeastern and Southeastern Sections of the Geological Society of America, to be held March 25-27 in Tysons Corner, Va.

Bivalves (i.e. clams) are common today while brachiopods, which look like clams but have a different biology, were most common in ancient oceans. Both types of organism have been around for over 500 million years and still exist today, which makes them good subjects for an assessment of long-term body size trends. Changes in body size could reveal whether an organism evolved and became more efficient or whether environmental changes had an impact. "But no one has compiled a list of how body size changed for a group of animals over long time periods," Krause says. He and colleagues want to look at two time periods – from 500 million to 300 million years ago and from 200 million to 25 million years ago.



"Since paleontology became a science, people have been publishing papers on new species from all over the world. With the advent of photography, authors began to provide volumes of photographic plates that document everything they thought was important about a species. If we could find a way to get size data from the photos, we could travel around the world simply by going to the library," says Krause.

But there were two big questions. Are the photos an accurate representation of size, and, were the specimens selected to be photographed actually representative of those collected?

Virgnia Tech professor of geosciences Michal Kowalewski addressed the first question by measuring brachiopods in photos and then measuring the actually specimens that were retained at museums. He reported, along with several colleagues, that the difference was negligible and was within the error range of the instruments used to take the measurements (Kowalewski et al., 2000).

Krause and colleagues have been researching the second question by examining the specimens field geologists originally shoveled into their collection boxes. They compared the range of sizes of the specimens in each box with those finally selected for the limelight in a scientific journal. "The author can’t photograph every specimen due to space," says Krause. He went to museums to examine the boxed fossils originally collected for 41 species of brachiopods and 45 species of bivalves from a half-dozen countries.

"The distribution of those that were photographed were generally within the range we observed by measuring the collections," Krause says. However, authors did tend to pick more of the larger specimens to photograph than would have actually been representative, the Virginia Tech researchers discovered. "In both the bivalve and brachiopod samples, about one-third of the specimens photographed were in the top 10 percent of those collected in terms of size," says Krause.

"The taxonomic literature is biased," Krause says, "but it is biased in the same direction and roughly the same magnitude for both brachiopods and bivalves. So, we feel that the methodology of measuring photographs in the literature can be useful," says Krause, "although, it is still controversial. There are geoscientists who are not comfortable with this approach."

He and his colleagues will continue to double check the methodology as they collect large amounts of size data over the next several years. They expect that these data will help answer many important questions about the history of life, and it will probably spark some new ones as well.

Krause will present the paper, "Assessing the usefulness of literature-derived estimates of body size" (60-2), at 8:20 a.m. Saturday, March 27, in the Lord Thomas Fairfax Room of the Hilton McLean Tysons Corner. Co authors are Krause, Virginia Tech graduate student Jennifer Stempien, Kowalewski, and Arnold Miller of the Department of Geology at the University of Cincinnati.

Krause says he has always been interested in geology and biology. As an undergraduate at the University of Wisconsin, he discovered he could combine the interests. His bachelor’s degree is in geology from the University of Wisconsin and his master’s degree in geology is from the University of Cincinnati.


Reference:
Kowalewski, M. Simões, M.G., Torello, F.F., Mello, L.H.C., and Ghilardi, R.P. (2000) Drill holes in shells of Permian benthic invertebrates. Journal of Paleontology, 74:532-543.

Contact for further information:
Richard Alan Krause, Jr, rkrause@vt.edu, 540-231-8828
Dr. Michal Kowalewski, michalk@vt.edu, 540-231-5951

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>