Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian mystery explained

26.03.2004


A shaded-relief image of the ice cap on Mars’ North Pole. Courtesy of Jon Pelletier, UA.


The image generated by Pelletier’s computer simulations shows patterns like those of Mars’ spiral troughs, right down to the imperfections. Courtesy of Jon Pelletier


The spiral troughs of Mars’ polar ice caps have been called the most enigmatic landforms in the solar system. The deep canyons spiraling out from Red Planet’s North and South poles cover hundreds of miles. No other planet has such structures.

A new model of trough formation suggests that heating and cooling alone are sufficient to form the unusual patterns. Previous explanations had focused on alternate melting and refreezing cycles but also required wind or shifting ice caps.

“I applied specific parameters that were appropriate to Mars and out of that came spirals that were not just spirals, but spirals that had exactly the shape we see on Mars.” said Jon Pelletier, an assistant professor of geosciences at the University of Arizona in Tucson. “They had the right spacing, they had the right curvature, they had the right relationship to one another.”



His report, “How do spiral troughs form on Mars?,” is published in the April issue of the journal Geology. One of his computer simulations of the troughs graces the cover.

How the icy canyons formed in a spiral has puzzled scientists since the pattern was first spotted by the Viking spacecraft in 1976.

Pelletier, a geomorphologist who studies landforms on Earth such as sand dunes and river channels, has a fondness for natural patterns that are regularly spaced.

Spirals fit the bill, and while perusing a book on mathematical patterns in biology, he was struck by the spiral shape formed by slime molds. He wondered whether the mathematical equation that described how the slime mold grew could also be applied to geological processes.

"There’s a recipe for getting spirals to form," he said. So he tried it out, using information that described the situation on Mars.

Temperatures on Mars are below freezing most of the year. During very brief periods during the summer, temperatures on the polar ice caps get just high enough to let the ice melt a bit, Pelletier said.

He proposes that during that time, cracks or nicks in the ice’s surface that present a steep side toward the sun might melt a bit, deepening and widening the crack. Heat from the sun also diffuses through the ice.

Much as ice cubes evaporate inside a freezer, on Mars, the melting ice vaporizes rather than becoming liquid water.

The water vapor, when it hits the cold, shady side of the little canyon, condenses and refreezes. So the canyon expands and deepens because one side is heated occasionally while the other side always remains cold.

"The ambient temperatures on Mars are just right to create this form. And that’s not true anywhere else in the solar system," he said. "The spirals are created because melting is focused in a particular place."

Pelletier said the differential melting and refreezing is the key to the formation of Mars’ spiral troughs.

So he put mathematical descriptions of the heating and cooling cycles into the spiral-generating equation and ran computer simulations to predict what would occur over thousands of such cycles. He did not include wind or movement of polar ice caps in his model.

The computer made patterns that match what’s seen on Mars, even down to the imperfections in the spirals.

"The model I have predicts the spacing between these things, how they’re curved, and how they evolve over time to create spiral feature," he said.

"A lot of planetary sciences is about making educated guesses about the imagery that we see. We can’t go there, we can’t do do field experiments," he said. "The development of numerical models provides strong suggestions as to what’s essential to create the form that we see," and allows scientists to test their assumptions, he said.

Mari N. Jensen | University of Arizona
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/3/wa/SRStoryDetails?ArticleID=8860

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>