Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA uses a ’SLEUTH’ to predict urban land use

26.03.2004


Study Area Within Chesapeake Bay Watershed

This image shows the greater Washington-Baltimore metropolitan study area within the Chesapeake Bay watershed. Credit: Claire Jantz


Urban growth in Washington DC, 1986-2000

These satellite images of impervious surface data are an indication of the 39% increase in developed land in the Washington DC metropolitan area between 1986 (top) and 2000 (bottom). These images were derived from Landsat data fitted with an algorithm that illuminates changes in low-density residential land use, exemplifying sprawl. Impervious surfaces are shown in yellow, orange, and red.
Credit: NASA/USGS


According to NASA-funded researchers, developed land in the greater Washington-Baltimore metropolitan area is projected to increase 80 percent by 2030. Scientists used a computer-based decision support model loaded with NASA and commercial satellite images to simulate three policies affecting land use.

The researchers, Claire Jantz and Scott Goetz, from the University of Maryland, College Park, Md., and the Woods Hole Research Center, Woods Hole, Mass., also found a 39 percent increase in developed land in the region from 1986 to 2000. Some of the most striking changes occurred around the Dulles Airport area in Northern Virginia.

Observations from NASA and commercial Earth observation satellites were used in a United States Geological Survey (USGS) computer model, called SLEUTH. The model was applied to 23,700 square kilometers (9151 sq. miles) of the Washington-Baltimore metropolitan area. The initial aim was to simulate the impact of future policy scenarios on the area and Chesapeake Bay watershed. "The satellite observations provided us with an unprecedented ability to monitor the urbanization process and capture the patterns of urban sprawl," Goetz said.



The study is in the March issue of Environment and Planning B. It explains how models may be used to forecast the effects of urban growth and runoff on the Chesapeake Bay estuary system.

The study showed how high resolution commercial imagery from Space Imaging’s IKONOS satellite can be used to complement NASA’s imagery from Landsat satellites. IKONOS images, with resolutions up to one meter (3.28 feet), were used with county-level air photos to link to 30-meter Landsat observations, which cover vast areas and offer a longer time frame for assessing urban change.

The project was designed to study declining water quality in the Chesapeake Bay estuary due in part to disruptions in the hydrological system caused by urban and suburban development. The goal was to create a modeling system that could assess future development and support decision making by exploring the potential impact of different regional management scenarios. Future growth was projected out to 2030 using three different policy scenarios. The scenarios were based on current trends, managed, and ecologically sustainable growth.

The current trends scenario simulated how the Washington metropolitan area might change if development policies remained the same. This scenario included forest and agricultural preservation already in place, leaving unprotected areas open for development. In this scenario, development increased by 80 percent by 2030.

The managed growth scenario assumed added protection of forests and agriculture areas and placed moderate growth boundaries around already built areas. In this scenario, development increased by 30 percent by 2030. In the ecological scenario, strong protection of most forests and agricultural areas was projected, so development only increased by 20 percent by 2030.

"The model is a tool that can be used for land use planning and resource management," Jantz said. "It offers the ability to explore and visualize alternative futures."

The model is applicable to land use studies, and it has small to large-scale potential. It can also help decision-makers assess the configuration of landscapes in forests and urban areas, and understand sources of runoff related to water quality in streams. The Maryland Department of Natural Resources is exploring use of the model to target forest resources, restoration and conservation activities.

NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space. NASA funded the study, with additional funds from the Chesapeake Bay Foundation.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0322sleuth.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>