Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone-destroying gas in atmosphere increased significantly during Industrial Age, study shows

24.03.2004


By examining trapped air bubbles in an ice core, researchers extend atmospheric record of methyl bromide over 300 years


Photograph by: Melanie Conner, National Science Foundation



Human activity in the Industrial Age – approximately the last 150 years – has significantly increased atmospheric levels of methyl bromide, a gas known for harming the ozone layer in the Earth’s stratosphere.

A research team led by UC Irvine scientist Eric Saltzman reached this conclusion after examining an ice core recovered from Antarctica. By studying air bubbles trapped in the core, Saltzman’s team was able to compare levels of methyl bromide in the atmosphere over the last three centuries. The team concluded that during the industrial era, the amount of global atmospheric methyl bromide in Southern Hemisphere air appears to have increased by 3.5 parts per trillion, or approximately 50 percent of the preindustrial level of the gas.


The researchers report their findings in the March 2, 2004, issue of the Journal of Geophysical Research – Atmospheres.

In the study, the researchers utilized 23 samples of shallow ice core drilled in 1995 in Siple Dome, West Antarctica, as part of a National Science Foundation-sponsored ice coring project in the West Antarctic ice sheet. Air was extracted from the samples in Saltzman’s laboratory at UCI and analyzed using gas chromatography/mass spectrometry, a powerful analytical technique.

“We found trace levels of methyl bromide dating back to the late 1600s in the core’s air bubbles,” said Saltzman, professor of Earth system science. “This longer-term record of methyl bromide shows convincingly that the amount of methyl bromide in the atmosphere increased during the industrial era. The reconstruction of ancient atmospheric levels of methyl bromide is an exciting development. Ice core records can provide insights into the natural variability of methyl bromide and shed light on how sensitive its atmospheric cycle is to climate change.”

Previous records of methyl bromide in the atmosphere – a compilation of instrumental records and firn air measurements – had only extended back to about the year 1900. (Firn is rounded, well-bonded snow that is older than one year.)

The researchers also developed a numerical model to simulate major processes involved in the global biogeochemical cycle of methyl bromide. Both the ice core measurements and modeling results show that human activities such as fumigation, combustion and biomass burning in industrial times have significantly increased atmospheric levels of this gas. “They also highlight the large uncertainty still remaining in our understanding of the modern atmospheric methyl bromide budget,” Saltzman said.

Methyl bromide is a fumigant used to control insects, nematodes, weeds and pathogens in crops, forests and wood products. Its primary uses are for soil fumigation, postharvest protection and quarantine treatments. The gas also has natural sources in both terrestrial and oceanic environments, as well as natural “sinks” that can remove methyl bromide from the atmosphere. It is the only chemical included in the Montreal Protocol – the international agreement designed to protect the Earth’s stratospheric ozone layer – that has major natural sources. Understanding the natural sources and sinks of methyl bromide is a focus of current research, as is gaining a greater understanding of other gases harming the ozone layer, which protects the Earth from ultraviolet radiation.

Researchers Murat Aydin of UCI; Warren J. De Bruyn of Chapman University, Orange, Calif.; Daniel B. King of Drexel University, Philadelphia, Pa.; and Shari A. Yvon-Lewis of the National Oceanic and Atmospheric Administration, Miami, Fla., also contributed to the study. The research was supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Iqbal Pittalwala | UCI
Further information:
http://today.uci.edu/news/release_detail.asp?key=1113

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>