Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone-destroying gas in atmosphere increased significantly during Industrial Age, study shows

24.03.2004


By examining trapped air bubbles in an ice core, researchers extend atmospheric record of methyl bromide over 300 years


Photograph by: Melanie Conner, National Science Foundation



Human activity in the Industrial Age – approximately the last 150 years – has significantly increased atmospheric levels of methyl bromide, a gas known for harming the ozone layer in the Earth’s stratosphere.

A research team led by UC Irvine scientist Eric Saltzman reached this conclusion after examining an ice core recovered from Antarctica. By studying air bubbles trapped in the core, Saltzman’s team was able to compare levels of methyl bromide in the atmosphere over the last three centuries. The team concluded that during the industrial era, the amount of global atmospheric methyl bromide in Southern Hemisphere air appears to have increased by 3.5 parts per trillion, or approximately 50 percent of the preindustrial level of the gas.


The researchers report their findings in the March 2, 2004, issue of the Journal of Geophysical Research – Atmospheres.

In the study, the researchers utilized 23 samples of shallow ice core drilled in 1995 in Siple Dome, West Antarctica, as part of a National Science Foundation-sponsored ice coring project in the West Antarctic ice sheet. Air was extracted from the samples in Saltzman’s laboratory at UCI and analyzed using gas chromatography/mass spectrometry, a powerful analytical technique.

“We found trace levels of methyl bromide dating back to the late 1600s in the core’s air bubbles,” said Saltzman, professor of Earth system science. “This longer-term record of methyl bromide shows convincingly that the amount of methyl bromide in the atmosphere increased during the industrial era. The reconstruction of ancient atmospheric levels of methyl bromide is an exciting development. Ice core records can provide insights into the natural variability of methyl bromide and shed light on how sensitive its atmospheric cycle is to climate change.”

Previous records of methyl bromide in the atmosphere – a compilation of instrumental records and firn air measurements – had only extended back to about the year 1900. (Firn is rounded, well-bonded snow that is older than one year.)

The researchers also developed a numerical model to simulate major processes involved in the global biogeochemical cycle of methyl bromide. Both the ice core measurements and modeling results show that human activities such as fumigation, combustion and biomass burning in industrial times have significantly increased atmospheric levels of this gas. “They also highlight the large uncertainty still remaining in our understanding of the modern atmospheric methyl bromide budget,” Saltzman said.

Methyl bromide is a fumigant used to control insects, nematodes, weeds and pathogens in crops, forests and wood products. Its primary uses are for soil fumigation, postharvest protection and quarantine treatments. The gas also has natural sources in both terrestrial and oceanic environments, as well as natural “sinks” that can remove methyl bromide from the atmosphere. It is the only chemical included in the Montreal Protocol – the international agreement designed to protect the Earth’s stratospheric ozone layer – that has major natural sources. Understanding the natural sources and sinks of methyl bromide is a focus of current research, as is gaining a greater understanding of other gases harming the ozone layer, which protects the Earth from ultraviolet radiation.

Researchers Murat Aydin of UCI; Warren J. De Bruyn of Chapman University, Orange, Calif.; Daniel B. King of Drexel University, Philadelphia, Pa.; and Shari A. Yvon-Lewis of the National Oceanic and Atmospheric Administration, Miami, Fla., also contributed to the study. The research was supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Iqbal Pittalwala | UCI
Further information:
http://today.uci.edu/news/release_detail.asp?key=1113

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>