Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical rule said to be widely and wrongly used to forecast future beach erosion

19.03.2004


A decades-old mathematical model is being inappropriately used in at least 26 nations to make potentially costly predictions about how shorelines will retreat in response to rising sea levels, two coastal scientists contended in the Friday, March 19, 2004, issue of the research journal Science.



"Models can be a hazard to society, and this is certainly an example of such," wrote Orrin Pilkey of Duke University’s Nicholas School of the Environment and Earth Sciences, and J. Andrew Cooper of the Coastal Research Group at the University of Ulster in Northern Ireland, in a Perspectives commentary.

The mathematical equation, called the Bruun rule, "is a ’one model fits all’ approach unsuitable in a highly complex natural environment with large spatial variations in shoreline retreat," the two authors added. "Even under ideal conditions ... the rule has never been credibly shown to provide accurate predictions."


Pilkey, a retired geology professor who still directs Duke’s Program for the Study of Developed Shorelines, said in an interview that the rule was developed in the 1960s by Per Bruun, a Danish civil engineer who was long active in Florida beach preservation projects.

According to Pilkey, the Bruun rule stipulates that it is the slope of the "shoreface" -- the broad front of a beach extending down into the water to a depth of about 10 yards -- that controls how and how quickly a beach "erodes," meaning how it retreats landward as sea level rises.

"There is no relationship between the shoreface slope and the rate of erosion," he said. "We know that each shoreline is different, and one model cannot possibly explain every shoreface. It’s ludicrous. And yet it’s being defended by a number of people."

Their commentary also said the Bruun rule is intended "to be deployed only under a limited range of environmental circumstances (such as uniform sandy shorefaces with no rock or mud outcrops). Unfortunately, these constraints on its use are widely ignored, and it has been applied to such diverse coastal types as mud flats, rocky coasts and coral atolls.

"Even under ideal conditions, however, the rule has never been credibly shown to provide accurate predictions," the commentary added.

Two ways of predicting the retreat of shorelines are actually in "widespread practice," the authors noted. One way is the Bruun rule. The other method is to use a beach’s past behavior to "extrapolate" its future erosion trends. They asserted that extrapolation also "has problems" in that past data is incomplete, and different parts of a single beachfront may erode at different rates.

"We advocate recognition and acceptance that we cannot actually predict shoreline retreat related to sea level rise," Pilkey said, quoting from their commentary. "It’s too complex.

"What startles me is why people think they can take a mathematical equation that requires only a navigation chart and actually predict what sea level rise will do. The answer is because everybody thinks that if it’s done mathematically it’s sophisticated and state-of-the-art.

"One of the big lessons here is that sometimes intuition based on experience on a given shoreline is a lot better than a mathematical model."

Cooper consulted available information with the aid of an Internet computer search service to come up with the estimate that the Bruun rule is in use in 26 countries, Pilkey said.

Their commentary noted that much of the developed world has experienced "a four-decade rush to the shore, with concomitant beachfront development and exponentially increasing total values for beachfront, real estate, infrastructure and buildings."

This development has "unfortunately coincided with the century of accelerated global sea level rise," it added. That coincidence "means that the prediction of the future rate of shoreline retreat has become a major societal priority."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>