Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Universal Law May Govern Time Elapsed Between Earthquakes

03.03.2004


Surprisingly, the probability that an earthquake should reoccur in any part of the world is smaller, the longer the time since the last quake took place. This is one of the conclusions reached by the physicist Álvaro Corral, researcher at the Universitat Autònoma de Barcelona (UAB). Corral has been the first to observe that there is a relation between consecutive quake-to-quake time intervals that follows a universal distribution of probability. This in turn suggests the existence of a simple physical mechanism that regulates the process of earthquake generation. The research is to be published shortly in the prestigious journal Physical Review Letters.



If you throw a loaded dice, no-one can know the result beforehand, as this will be random; but if the dice is thrown a great number of times, one given result will come up more times than any other. Although the process is random, there is a distribution of probability that favours one result over the others.

A physicist at the UAB, Álvaro Corral, has discovered that earthquake behaviour follows a similar logic. Nobody knows the time interval between one quake and the next - this, too, is a random process - but Corral has found out that the process is “loaded”, that is, there is a distribution of probabilities that favours earthquakes being grouped together over time. As the researcher indicates, this tendency towards grouping shows itself in the very long term, and so goes far beyond the grouping of the successive replicas that occur in the immediate aftermath of an earthquake.


A surprising consequence of all this, although it may seem to run against the expected, is that the probability of an earthquake repeating is smaller, the longer the time since the last quake occurred. So, “the longer we’ve been waiting for the big one, the longer it’ll take for it to come”, says Corral.

The relation discovered by Álvaro Corral is found hidden under the register data for earthquakes that have taken place around the world since the 1970s. Corral has analysed this data from a perspective that is somewhat different to the traditional approach. Whilst it is true that, up to now, scientists have studied the intervals between quakes with a reductionist approach, differentiating between the main quake and its replicas, the UAB researcher has placed both quake types in the same basket. This approach is in accordance with the view taken by the philosophy of complexity, aiming to find descriptions for phenomena on a global scale. The approach is inspired by the late Danish physicist, Per Bak.

As the article published in Physical Review Letters points out, Corral divides the surface of the earth into different regions and takes into consideration the intervals of time between all the consecutive earthquakes catalogued for each of these zones. In analysing the distribution of probability for these time intervals, the UAB physicist discovered that, in spite of their randomness, the quakes are consistent with a universal law that tends to group them together.

This grouping tendency has appeared in all the statistical analyses carried out on the data catalogued, independently of the minimum intensities considered (running from 2 to 6.5 on the Richter Scale), or of the regions studied (running from those having 400 km2 to the entire Earth). In this way, the fact that all quakes obey a universal law of probability suggests the existence of a simple physical mechanism that regulates the process of earthquake generation on a global scale.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>