# Forum for Science, Industry and Business

Search our Site:

## A Universal Law May Govern Time Elapsed Between Earthquakes

03.03.2004

Surprisingly, the probability that an earthquake should reoccur in any part of the world is smaller, the longer the time since the last quake took place. This is one of the conclusions reached by the physicist Álvaro Corral, researcher at the Universitat Autònoma de Barcelona (UAB). Corral has been the first to observe that there is a relation between consecutive quake-to-quake time intervals that follows a universal distribution of probability. This in turn suggests the existence of a simple physical mechanism that regulates the process of earthquake generation. The research is to be published shortly in the prestigious journal Physical Review Letters.

If you throw a loaded dice, no-one can know the result beforehand, as this will be random; but if the dice is thrown a great number of times, one given result will come up more times than any other. Although the process is random, there is a distribution of probability that favours one result over the others.

A physicist at the UAB, Álvaro Corral, has discovered that earthquake behaviour follows a similar logic. Nobody knows the time interval between one quake and the next - this, too, is a random process - but Corral has found out that the process is “loaded”, that is, there is a distribution of probabilities that favours earthquakes being grouped together over time. As the researcher indicates, this tendency towards grouping shows itself in the very long term, and so goes far beyond the grouping of the successive replicas that occur in the immediate aftermath of an earthquake.

A surprising consequence of all this, although it may seem to run against the expected, is that the probability of an earthquake repeating is smaller, the longer the time since the last quake occurred. So, “the longer we’ve been waiting for the big one, the longer it’ll take for it to come”, says Corral.

The relation discovered by Álvaro Corral is found hidden under the register data for earthquakes that have taken place around the world since the 1970s. Corral has analysed this data from a perspective that is somewhat different to the traditional approach. Whilst it is true that, up to now, scientists have studied the intervals between quakes with a reductionist approach, differentiating between the main quake and its replicas, the UAB researcher has placed both quake types in the same basket. This approach is in accordance with the view taken by the philosophy of complexity, aiming to find descriptions for phenomena on a global scale. The approach is inspired by the late Danish physicist, Per Bak.

As the article published in Physical Review Letters points out, Corral divides the surface of the earth into different regions and takes into consideration the intervals of time between all the consecutive earthquakes catalogued for each of these zones. In analysing the distribution of probability for these time intervals, the UAB physicist discovered that, in spite of their randomness, the quakes are consistent with a universal law that tends to group them together.

This grouping tendency has appeared in all the statistical analyses carried out on the data catalogued, independently of the minimum intensities considered (running from 2 to 6.5 on the Richter Scale), or of the regions studied (running from those having 400 km2 to the entire Earth). In this way, the fact that all quakes obey a universal law of probability suggests the existence of a simple physical mechanism that regulates the process of earthquake generation on a global scale.

Further information:
http://www.uab.es

### More articles from Earth Sciences:

A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

### Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

### Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

### Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

### Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

### Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige