Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Could Release Large Amounts of Carbon

02.03.2004


Locked in Arctic Soils Into the Ocean, Researchers Say

The Arctic Ocean receives about ten percent of Earth’s river water and with it some 25 teragrams [28 million tons] per year of dissolved organic carbon that had been held in far northern bogs and other soils. Scientists had not known the age of the carbon that reaches the ocean: was it recently derived from contemporary plant material, or had it been locked in soils for hundreds or thousands of years and therefore not part of Earth’s recent carbon cycle?

Now, using carbon-14 data, scientists from the United States and Germany have been able to determine the approximate age of dissolved organic carbon in the Arctic for the first time. They report, in an article to be published this month in Geophysical Research Letters, that most of the carbon that reaches the ocean is relatively young at present, but that this could change. Warming of the Arctic, which has been documented in recent years, could affect northern peats, collectively one of the largest reservoirs of organic carbon on Earth. As the carbon-rich soils warm, the carbon is more susceptible to being transported to the ocean by rivers small and large, they say.

The researchers, headed by Ronald Benner of the University of South Carolina, studied four rivers in northern Russia and in Alaska, along with the Arctic Ocean itself. The carbon-14 dating method is not precise, because, for example, old and new dissolved organic carbon is typically mixed in a given sample, resulting in an average reading, and content of rivers varies by season as well. The scientists concentrated their study in periods of peak river discharge.

"Our results are not applicable to the sedimentary fraction of river discharge," Benner notes. "However, most of the organic carbon exported from land to the ocean is in dissolved form, and it is the dissolved components that track river water in the ocean."

River water tends to remain near the surface of the Arctic Ocean for five to 15 years, and the land-derived dissolved organic carbon from all sources and years is therefore mixed. Various samples gave radiocarbon average ages varying from 680 to 3,770 years, including both carbon from land-derived and marine sources. The researchers analyzed dissolved lignin phenols to determine the portion of a particular sample that had originated on land, as the compound is related only to terrestrial plant material.

The East Greenland Current is the major source of both Arctic Ocean water and its dissolved organic carbon component reaching the North Atlantic Ocean. The study concludes that the land- derived dissolved organic carbon reaching the Atlantic via this current is much younger than the marine component. In fact, up to half of it reaches the Atlantic, some three to 12 teragrams [three million to 13 million tons]. The fate of the young land-derived dissolved organic carbon in the Atlantic Ocean is uncertain, but there is no evidence of this material at lower latitudes in the Atlantic, the researchers say.

"This suggests most of the land-derived organic carbon ends up being oxidized to carbon dioxide and thus eventually cycles back into the atmosphere," says Benner. "If current warming trends in the Arctic continue, we can expect to see more of the old carbon now sequestered in northern soils enter the carbon cycle as carbon dioxide. This will act as a positive feedback, tending to enhance the greenhouse effect and accelerate global warming."

The research was funded by the U.S. National Science Foundation and the German Federal Ministry of Education and Research.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>