Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate Change Could Release Large Amounts of Carbon


Locked in Arctic Soils Into the Ocean, Researchers Say

The Arctic Ocean receives about ten percent of Earth’s river water and with it some 25 teragrams [28 million tons] per year of dissolved organic carbon that had been held in far northern bogs and other soils. Scientists had not known the age of the carbon that reaches the ocean: was it recently derived from contemporary plant material, or had it been locked in soils for hundreds or thousands of years and therefore not part of Earth’s recent carbon cycle?

Now, using carbon-14 data, scientists from the United States and Germany have been able to determine the approximate age of dissolved organic carbon in the Arctic for the first time. They report, in an article to be published this month in Geophysical Research Letters, that most of the carbon that reaches the ocean is relatively young at present, but that this could change. Warming of the Arctic, which has been documented in recent years, could affect northern peats, collectively one of the largest reservoirs of organic carbon on Earth. As the carbon-rich soils warm, the carbon is more susceptible to being transported to the ocean by rivers small and large, they say.

The researchers, headed by Ronald Benner of the University of South Carolina, studied four rivers in northern Russia and in Alaska, along with the Arctic Ocean itself. The carbon-14 dating method is not precise, because, for example, old and new dissolved organic carbon is typically mixed in a given sample, resulting in an average reading, and content of rivers varies by season as well. The scientists concentrated their study in periods of peak river discharge.

"Our results are not applicable to the sedimentary fraction of river discharge," Benner notes. "However, most of the organic carbon exported from land to the ocean is in dissolved form, and it is the dissolved components that track river water in the ocean."

River water tends to remain near the surface of the Arctic Ocean for five to 15 years, and the land-derived dissolved organic carbon from all sources and years is therefore mixed. Various samples gave radiocarbon average ages varying from 680 to 3,770 years, including both carbon from land-derived and marine sources. The researchers analyzed dissolved lignin phenols to determine the portion of a particular sample that had originated on land, as the compound is related only to terrestrial plant material.

The East Greenland Current is the major source of both Arctic Ocean water and its dissolved organic carbon component reaching the North Atlantic Ocean. The study concludes that the land- derived dissolved organic carbon reaching the Atlantic via this current is much younger than the marine component. In fact, up to half of it reaches the Atlantic, some three to 12 teragrams [three million to 13 million tons]. The fate of the young land-derived dissolved organic carbon in the Atlantic Ocean is uncertain, but there is no evidence of this material at lower latitudes in the Atlantic, the researchers say.

"This suggests most of the land-derived organic carbon ends up being oxidized to carbon dioxide and thus eventually cycles back into the atmosphere," says Benner. "If current warming trends in the Arctic continue, we can expect to see more of the old carbon now sequestered in northern soils enter the carbon cycle as carbon dioxide. This will act as a positive feedback, tending to enhance the greenhouse effect and accelerate global warming."

The research was funded by the U.S. National Science Foundation and the German Federal Ministry of Education and Research.

Harvey Leifert | AGU
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>