Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Could Release Large Amounts of Carbon

02.03.2004


Locked in Arctic Soils Into the Ocean, Researchers Say

The Arctic Ocean receives about ten percent of Earth’s river water and with it some 25 teragrams [28 million tons] per year of dissolved organic carbon that had been held in far northern bogs and other soils. Scientists had not known the age of the carbon that reaches the ocean: was it recently derived from contemporary plant material, or had it been locked in soils for hundreds or thousands of years and therefore not part of Earth’s recent carbon cycle?

Now, using carbon-14 data, scientists from the United States and Germany have been able to determine the approximate age of dissolved organic carbon in the Arctic for the first time. They report, in an article to be published this month in Geophysical Research Letters, that most of the carbon that reaches the ocean is relatively young at present, but that this could change. Warming of the Arctic, which has been documented in recent years, could affect northern peats, collectively one of the largest reservoirs of organic carbon on Earth. As the carbon-rich soils warm, the carbon is more susceptible to being transported to the ocean by rivers small and large, they say.

The researchers, headed by Ronald Benner of the University of South Carolina, studied four rivers in northern Russia and in Alaska, along with the Arctic Ocean itself. The carbon-14 dating method is not precise, because, for example, old and new dissolved organic carbon is typically mixed in a given sample, resulting in an average reading, and content of rivers varies by season as well. The scientists concentrated their study in periods of peak river discharge.

"Our results are not applicable to the sedimentary fraction of river discharge," Benner notes. "However, most of the organic carbon exported from land to the ocean is in dissolved form, and it is the dissolved components that track river water in the ocean."

River water tends to remain near the surface of the Arctic Ocean for five to 15 years, and the land-derived dissolved organic carbon from all sources and years is therefore mixed. Various samples gave radiocarbon average ages varying from 680 to 3,770 years, including both carbon from land-derived and marine sources. The researchers analyzed dissolved lignin phenols to determine the portion of a particular sample that had originated on land, as the compound is related only to terrestrial plant material.

The East Greenland Current is the major source of both Arctic Ocean water and its dissolved organic carbon component reaching the North Atlantic Ocean. The study concludes that the land- derived dissolved organic carbon reaching the Atlantic via this current is much younger than the marine component. In fact, up to half of it reaches the Atlantic, some three to 12 teragrams [three million to 13 million tons]. The fate of the young land-derived dissolved organic carbon in the Atlantic Ocean is uncertain, but there is no evidence of this material at lower latitudes in the Atlantic, the researchers say.

"This suggests most of the land-derived organic carbon ends up being oxidized to carbon dioxide and thus eventually cycles back into the atmosphere," says Benner. "If current warming trends in the Arctic continue, we can expect to see more of the old carbon now sequestered in northern soils enter the carbon cycle as carbon dioxide. This will act as a positive feedback, tending to enhance the greenhouse effect and accelerate global warming."

The research was funded by the U.S. National Science Foundation and the German Federal Ministry of Education and Research.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>