Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Dates Saharan Groundwater as Million Years Old

01.03.2004

The Mediterranean Sea was a desert, millions of years ago. In contrast, the Sahara Desert was once a lush, green landscape dotted with lakes and ponds. Evidence of this past verdancy lies hidden beneath the sands of Egypt and Libya, in the form of a huge aquifer of fresh groundwater. An international team of geologists and physicists has found that this groundwater has been flowing slowly northward (at about the rate grass grows) for the past million years. Their findings have been accepted for March publication in Geophysical Research Letters, published by the American Geophysical Union.

Determining residence times and flow velocities of groundwater in aquifers is a vexing challenge. The extremely rare radioactive isotope krypton-81 (half-life of 229,000 years), which is produced by cosmic rays in the atmosphere, could be an ideal groundwater chronometer on the million-year time scale, but it has been nearly impossible to measure because of its low abundance. There is only one atom of krypton-81 in a trillion atoms of atmospheric krypton, a rare gas to begin with, and krypton is absorbed only slightly by water.

Recently, scientists at Argonne National Laboratory developed a laser-based method to count individual atoms of krypton-81 and measure its abundance accurately. Known as ATTA, for Atom-Trap Trace Analysis, this new, ultrasensitive method could revolutionize the scientific study of such topics as continental groundwater flow, long-term glacier motion, and seawater circulation through the ocean floor, say the researchers.

In their Geophysical Research Letters paper, Neil C. Sturchio (University of Illinois at Chicago), Zheng-Tian Lu (Argonne National Laboratory), Roland Purtschert (University of Bern), Mohamed Sultan (State University of New York at Buffalo), and others report the most extensive measurements yet made for krypton-81 in groundwater. In the first application of the ATTA method to a groundwater investigation, this team visited the Western Desert of Egypt to sample krypton from the Nubian Aquifer groundwater, which was reputedly old but of unknown age.

To obtain a sufficient amount of krypton for the ATTA measurements, the team had to extract dissolved gases from thousands of liters [gallons] of groundwater in the field, using a device invented by the Swiss members of the team. The gas extracted from each well was compressed into steel containers and shipped to Bern, where the trace amount of krypton in each sample was purified and delivered to Argonne for analysis of krypton-81. ATTA measured the ratios of krypton-81 to ordinary krypton, which ranged from about five to 53 percent of that in the air, corresponding to groundwater ages of 200,000 to 1,000,000 years.

Based on these data, it is possible to estimate the direction and velocity of the groundwater flow, which is about one-to-two meters [yards] per year toward the north, and to determine the recharge location in southwest Egypt. This confirms results from some previous numerical hydrologic models, but refutes others. Isotopic characteristics of the water itself indicate that it was transported by air masses traveling long distances over North Africa from the Atlantic Ocean, thus reflecting climate conditions much different from the present during the past million years. Changing climate patterns turned this green oasis into today’s desert.

The research was funded primarily by the National Science Foundation and the Department of Energy.

Harvey Leifert | AGU

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>