Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon found to be older than the Solar System

27.02.2004


For the first time, researchers have identified organic material in interplanetary dust particles (IDPs), gathered from the Earth’s stratosphere, that was made before the birth of our Solar System.



The material was identified on the basis of its carbon isotopic composition, which is different from the carbon found on Earth and in other parts of the Solar System. Isotopes are variations of elements that differ from each other in the number of neutrons they have, making them similar chemically but different physically.

Christine Floss, Ph.D., senior research scientist in Earth and Planetary Sciences and Physics at Washington University in St. Louis, said that the organic material in the IDP she and her colleagues analyzed probably was formed in molecular clouds in the interstellar medium before the formation of the Solar System. The isotopic anomalies are produced by chemical fractionation at the very low temperatures found in these molecular clouds.


"Our findings are proof that there is presolar organic material coming into the Solar System yet today," Floss said. "This material has been preserved for more than 4.5 billion years, which is the age of the Solar System. It’s amazing that it has survived for so long."

The finding helps in understanding the Solar System’s formation and the origin of organic matter on Earth. The work was published in the Feb. 27, 2004 issue of Science, and was supported by NASA grants.

Over the past 20 years, researchers have found isotopic anomalies in nitrogen and hydrogen from IDPs but never before in carbon. Floss said one of the reasons for this was the limitations of earlier instruments. She and her colleagues used a new type of ion microprobe called the NanoSIMS, which enables researchers to analyze particles at much greater spatial resolution and higher sensitivity than before. Until recently, ion probes could only measure the average properties of an IDP. In 2000, with help from NASA and the National Science Foundation, the University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS can resolve particles as small as 100 nanometers in diameter. A hundred thousand such particles side-by-side would make a centimeter. Typical sub-grains in IDPs range from 100 nanometers to 500 nanometers.

"The question has always been: Why don’t we see any unusual carbon isotopic compositions?" Floss said. "The thinking was if the nitrogen and hydrogen isotopic anomalies are formed in the same regions of space, it was logical to expect unusual carbon isotopic compositions as well. One school of thought was that there were different fractionation processes with carbon in opposite directions, that cancelled out any anomalies produced. Another possibility was that the nitrogen and hydrogen might have been produced in phases that weren’t originally organic – that the organic material itself was formed in the solar system and basically inherited the hydrogen and nitrogen isotopic compositions from some precursor material. But our isotopic analysis shows that the organic material was formed before the Solar System existed and was later incorporated into the IDP."

Floss and Frank Stadermann, Ph.D., Washington University senior research scientist in Physics, worked with colleagues at Lawrence Livermore National Laboratory in drawing their conclusions.

"A lot of IDPs come from comets," Floss said. "It makes sense that organic material would be preserved in a very cold environment, such as where comets form at the edge of the Solar System. For something to stay this pristine and primitive, one can assume that it came from that kind of environment."

Floss said it’s estimated that, over a million years, about a centimeter of carbonaceous material comes in the form of such cosmic dust and a significant amount of that material may be presolar in origin.

Floss said that her work builds on the pioneering work of the late Robert Walker, Ph.D., professor of Physics at Washington University. Walker was instrumental in the acquisition of the NanoSIMS and in the 1980s made landmark studies verifying the extraterrestrial origin of such stratospheric dust particles.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>