Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon found to be older than the Solar System

27.02.2004


For the first time, researchers have identified organic material in interplanetary dust particles (IDPs), gathered from the Earth’s stratosphere, that was made before the birth of our Solar System.



The material was identified on the basis of its carbon isotopic composition, which is different from the carbon found on Earth and in other parts of the Solar System. Isotopes are variations of elements that differ from each other in the number of neutrons they have, making them similar chemically but different physically.

Christine Floss, Ph.D., senior research scientist in Earth and Planetary Sciences and Physics at Washington University in St. Louis, said that the organic material in the IDP she and her colleagues analyzed probably was formed in molecular clouds in the interstellar medium before the formation of the Solar System. The isotopic anomalies are produced by chemical fractionation at the very low temperatures found in these molecular clouds.


"Our findings are proof that there is presolar organic material coming into the Solar System yet today," Floss said. "This material has been preserved for more than 4.5 billion years, which is the age of the Solar System. It’s amazing that it has survived for so long."

The finding helps in understanding the Solar System’s formation and the origin of organic matter on Earth. The work was published in the Feb. 27, 2004 issue of Science, and was supported by NASA grants.

Over the past 20 years, researchers have found isotopic anomalies in nitrogen and hydrogen from IDPs but never before in carbon. Floss said one of the reasons for this was the limitations of earlier instruments. She and her colleagues used a new type of ion microprobe called the NanoSIMS, which enables researchers to analyze particles at much greater spatial resolution and higher sensitivity than before. Until recently, ion probes could only measure the average properties of an IDP. In 2000, with help from NASA and the National Science Foundation, the University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS can resolve particles as small as 100 nanometers in diameter. A hundred thousand such particles side-by-side would make a centimeter. Typical sub-grains in IDPs range from 100 nanometers to 500 nanometers.

"The question has always been: Why don’t we see any unusual carbon isotopic compositions?" Floss said. "The thinking was if the nitrogen and hydrogen isotopic anomalies are formed in the same regions of space, it was logical to expect unusual carbon isotopic compositions as well. One school of thought was that there were different fractionation processes with carbon in opposite directions, that cancelled out any anomalies produced. Another possibility was that the nitrogen and hydrogen might have been produced in phases that weren’t originally organic – that the organic material itself was formed in the solar system and basically inherited the hydrogen and nitrogen isotopic compositions from some precursor material. But our isotopic analysis shows that the organic material was formed before the Solar System existed and was later incorporated into the IDP."

Floss and Frank Stadermann, Ph.D., Washington University senior research scientist in Physics, worked with colleagues at Lawrence Livermore National Laboratory in drawing their conclusions.

"A lot of IDPs come from comets," Floss said. "It makes sense that organic material would be preserved in a very cold environment, such as where comets form at the edge of the Solar System. For something to stay this pristine and primitive, one can assume that it came from that kind of environment."

Floss said it’s estimated that, over a million years, about a centimeter of carbonaceous material comes in the form of such cosmic dust and a significant amount of that material may be presolar in origin.

Floss said that her work builds on the pioneering work of the late Robert Walker, Ph.D., professor of Physics at Washington University. Walker was instrumental in the acquisition of the NanoSIMS and in the 1980s made landmark studies verifying the extraterrestrial origin of such stratospheric dust particles.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>