Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon found to be older than the Solar System

27.02.2004


For the first time, researchers have identified organic material in interplanetary dust particles (IDPs), gathered from the Earth’s stratosphere, that was made before the birth of our Solar System.



The material was identified on the basis of its carbon isotopic composition, which is different from the carbon found on Earth and in other parts of the Solar System. Isotopes are variations of elements that differ from each other in the number of neutrons they have, making them similar chemically but different physically.

Christine Floss, Ph.D., senior research scientist in Earth and Planetary Sciences and Physics at Washington University in St. Louis, said that the organic material in the IDP she and her colleagues analyzed probably was formed in molecular clouds in the interstellar medium before the formation of the Solar System. The isotopic anomalies are produced by chemical fractionation at the very low temperatures found in these molecular clouds.


"Our findings are proof that there is presolar organic material coming into the Solar System yet today," Floss said. "This material has been preserved for more than 4.5 billion years, which is the age of the Solar System. It’s amazing that it has survived for so long."

The finding helps in understanding the Solar System’s formation and the origin of organic matter on Earth. The work was published in the Feb. 27, 2004 issue of Science, and was supported by NASA grants.

Over the past 20 years, researchers have found isotopic anomalies in nitrogen and hydrogen from IDPs but never before in carbon. Floss said one of the reasons for this was the limitations of earlier instruments. She and her colleagues used a new type of ion microprobe called the NanoSIMS, which enables researchers to analyze particles at much greater spatial resolution and higher sensitivity than before. Until recently, ion probes could only measure the average properties of an IDP. In 2000, with help from NASA and the National Science Foundation, the University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS can resolve particles as small as 100 nanometers in diameter. A hundred thousand such particles side-by-side would make a centimeter. Typical sub-grains in IDPs range from 100 nanometers to 500 nanometers.

"The question has always been: Why don’t we see any unusual carbon isotopic compositions?" Floss said. "The thinking was if the nitrogen and hydrogen isotopic anomalies are formed in the same regions of space, it was logical to expect unusual carbon isotopic compositions as well. One school of thought was that there were different fractionation processes with carbon in opposite directions, that cancelled out any anomalies produced. Another possibility was that the nitrogen and hydrogen might have been produced in phases that weren’t originally organic – that the organic material itself was formed in the solar system and basically inherited the hydrogen and nitrogen isotopic compositions from some precursor material. But our isotopic analysis shows that the organic material was formed before the Solar System existed and was later incorporated into the IDP."

Floss and Frank Stadermann, Ph.D., Washington University senior research scientist in Physics, worked with colleagues at Lawrence Livermore National Laboratory in drawing their conclusions.

"A lot of IDPs come from comets," Floss said. "It makes sense that organic material would be preserved in a very cold environment, such as where comets form at the edge of the Solar System. For something to stay this pristine and primitive, one can assume that it came from that kind of environment."

Floss said it’s estimated that, over a million years, about a centimeter of carbonaceous material comes in the form of such cosmic dust and a significant amount of that material may be presolar in origin.

Floss said that her work builds on the pioneering work of the late Robert Walker, Ph.D., professor of Physics at Washington University. Walker was instrumental in the acquisition of the NanoSIMS and in the 1980s made landmark studies verifying the extraterrestrial origin of such stratospheric dust particles.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>