Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow-moving ground water slows down water-quality improvements in Chesapeake Bay

19.02.2004


Slow-moving ground water slows down water-quality improvements in Chesapeake Bay Ground water supplies about half of the water and nitrogen to streams in the Chesapeake Bay watershed and is therefore an important pathway for nitrogen to reach the bay, according to a recent U.S. Geological Survey (USGS) study. Too many nutrients, most of all nitrogen, are the principal cause for poor water-quality conditions in the Chesapeake Bay.



The ground water moving to streams in the Bay watershed has an average age of 10 years. The relatively slow movement of ground water to streams and into the Bay will impact the “lag time” between implementation of management practices and improvement of water quality in the Bay. The Chesapeake Bay Program, a multi-agency watershed partnership, is implementing nutrient-reduction strategies in an attempt to improve water-quality conditions in the Bay by 2010.

“Over the past dozen years we have seen more than 3 million acres in the Bay watershed put under nutrient management plans,” said Chesapeake Bay Program Director Rebecca Hanmer. “This improved scientific understanding provided by the USGS will help us better estimate when we’ll see the benefits from these efforts and how much more is needed to bring back the Bay.”


The age of ground water in shallow aquifers underlying most of the Chesapeake Bay watershed ranges from less than 1 year to more than 50 years. The majority of the ground water (75 percent) is less than 13 years old, which is younger than previously thought.

The USGS study found that just over 50 percent of the water in a stream is from ground water with a range of 16 to 92 percent. Surface-water runoff and soil water supply the rest of the water to a stream; both have very young ages (hours to months).

Nitrogen in streams that drain to the Bay comes from both runoff and ground water. Nitrogen enters ground water from rainfall or through application of fertilizers and other practices associated with agricultural, suburban and urban areas. The USGS study estimated that on average 48 percent of the total nitrogen load in a stream was transported through ground water, with a range of 17 to 80 percent in different streams.

“Knowing the amount, age and nitrogen content of ground water entering streams helps explain some of the reasons for the relatively slow improvements in water quality of rivers draining to the Bay,” said Scott Phillips, the USGS Chesapeake Bay coordinator and one of the investigators on the study. “The lessons learned from Chesapeake Bay will also help guide management decisions for protecting water quality in other areas of the nation.”

The findings of the USGS Chesapeake Bay ground-water study are summarized in a fact sheet, “The Influence of Ground Water on Nitrogen Delivery to the Chesapeake Bay,” (USGS Fact Sheet 091-03) and a comprehensive technical report, “Residence Times and Nitrate Transport in Ground Water Discharging to Streams in the Chesapeake Bay Watershed,” Water-Resources Investigations Report 03-4035. More information about USGS studies to help with the protection and restoration of the Chesapeake Bay and its watershed can be found on http://Chesapeake.usgs.gov.


The USGS serves the nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy and mineral resources; and enhance and protect our quality of life.

Kathleen Gohn | U.S. Geological Survey
Further information:
http://www.usgs.gov/public/press/public_affairs/press_releases/pr1854m.html
http://Chesapeake.usgs.gov

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>