Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow-moving ground water slows down water-quality improvements in Chesapeake Bay

19.02.2004


Slow-moving ground water slows down water-quality improvements in Chesapeake Bay Ground water supplies about half of the water and nitrogen to streams in the Chesapeake Bay watershed and is therefore an important pathway for nitrogen to reach the bay, according to a recent U.S. Geological Survey (USGS) study. Too many nutrients, most of all nitrogen, are the principal cause for poor water-quality conditions in the Chesapeake Bay.



The ground water moving to streams in the Bay watershed has an average age of 10 years. The relatively slow movement of ground water to streams and into the Bay will impact the “lag time” between implementation of management practices and improvement of water quality in the Bay. The Chesapeake Bay Program, a multi-agency watershed partnership, is implementing nutrient-reduction strategies in an attempt to improve water-quality conditions in the Bay by 2010.

“Over the past dozen years we have seen more than 3 million acres in the Bay watershed put under nutrient management plans,” said Chesapeake Bay Program Director Rebecca Hanmer. “This improved scientific understanding provided by the USGS will help us better estimate when we’ll see the benefits from these efforts and how much more is needed to bring back the Bay.”


The age of ground water in shallow aquifers underlying most of the Chesapeake Bay watershed ranges from less than 1 year to more than 50 years. The majority of the ground water (75 percent) is less than 13 years old, which is younger than previously thought.

The USGS study found that just over 50 percent of the water in a stream is from ground water with a range of 16 to 92 percent. Surface-water runoff and soil water supply the rest of the water to a stream; both have very young ages (hours to months).

Nitrogen in streams that drain to the Bay comes from both runoff and ground water. Nitrogen enters ground water from rainfall or through application of fertilizers and other practices associated with agricultural, suburban and urban areas. The USGS study estimated that on average 48 percent of the total nitrogen load in a stream was transported through ground water, with a range of 17 to 80 percent in different streams.

“Knowing the amount, age and nitrogen content of ground water entering streams helps explain some of the reasons for the relatively slow improvements in water quality of rivers draining to the Bay,” said Scott Phillips, the USGS Chesapeake Bay coordinator and one of the investigators on the study. “The lessons learned from Chesapeake Bay will also help guide management decisions for protecting water quality in other areas of the nation.”

The findings of the USGS Chesapeake Bay ground-water study are summarized in a fact sheet, “The Influence of Ground Water on Nitrogen Delivery to the Chesapeake Bay,” (USGS Fact Sheet 091-03) and a comprehensive technical report, “Residence Times and Nitrate Transport in Ground Water Discharging to Streams in the Chesapeake Bay Watershed,” Water-Resources Investigations Report 03-4035. More information about USGS studies to help with the protection and restoration of the Chesapeake Bay and its watershed can be found on http://Chesapeake.usgs.gov.


The USGS serves the nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy and mineral resources; and enhance and protect our quality of life.

Kathleen Gohn | U.S. Geological Survey
Further information:
http://www.usgs.gov/public/press/public_affairs/press_releases/pr1854m.html
http://Chesapeake.usgs.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>