Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow-moving ground water slows down water-quality improvements in Chesapeake Bay

19.02.2004


Slow-moving ground water slows down water-quality improvements in Chesapeake Bay Ground water supplies about half of the water and nitrogen to streams in the Chesapeake Bay watershed and is therefore an important pathway for nitrogen to reach the bay, according to a recent U.S. Geological Survey (USGS) study. Too many nutrients, most of all nitrogen, are the principal cause for poor water-quality conditions in the Chesapeake Bay.



The ground water moving to streams in the Bay watershed has an average age of 10 years. The relatively slow movement of ground water to streams and into the Bay will impact the “lag time” between implementation of management practices and improvement of water quality in the Bay. The Chesapeake Bay Program, a multi-agency watershed partnership, is implementing nutrient-reduction strategies in an attempt to improve water-quality conditions in the Bay by 2010.

“Over the past dozen years we have seen more than 3 million acres in the Bay watershed put under nutrient management plans,” said Chesapeake Bay Program Director Rebecca Hanmer. “This improved scientific understanding provided by the USGS will help us better estimate when we’ll see the benefits from these efforts and how much more is needed to bring back the Bay.”


The age of ground water in shallow aquifers underlying most of the Chesapeake Bay watershed ranges from less than 1 year to more than 50 years. The majority of the ground water (75 percent) is less than 13 years old, which is younger than previously thought.

The USGS study found that just over 50 percent of the water in a stream is from ground water with a range of 16 to 92 percent. Surface-water runoff and soil water supply the rest of the water to a stream; both have very young ages (hours to months).

Nitrogen in streams that drain to the Bay comes from both runoff and ground water. Nitrogen enters ground water from rainfall or through application of fertilizers and other practices associated with agricultural, suburban and urban areas. The USGS study estimated that on average 48 percent of the total nitrogen load in a stream was transported through ground water, with a range of 17 to 80 percent in different streams.

“Knowing the amount, age and nitrogen content of ground water entering streams helps explain some of the reasons for the relatively slow improvements in water quality of rivers draining to the Bay,” said Scott Phillips, the USGS Chesapeake Bay coordinator and one of the investigators on the study. “The lessons learned from Chesapeake Bay will also help guide management decisions for protecting water quality in other areas of the nation.”

The findings of the USGS Chesapeake Bay ground-water study are summarized in a fact sheet, “The Influence of Ground Water on Nitrogen Delivery to the Chesapeake Bay,” (USGS Fact Sheet 091-03) and a comprehensive technical report, “Residence Times and Nitrate Transport in Ground Water Discharging to Streams in the Chesapeake Bay Watershed,” Water-Resources Investigations Report 03-4035. More information about USGS studies to help with the protection and restoration of the Chesapeake Bay and its watershed can be found on http://Chesapeake.usgs.gov.


The USGS serves the nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy and mineral resources; and enhance and protect our quality of life.

Kathleen Gohn | U.S. Geological Survey
Further information:
http://www.usgs.gov/public/press/public_affairs/press_releases/pr1854m.html
http://Chesapeake.usgs.gov

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>