Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow-moving ground water slows down water-quality improvements in Chesapeake Bay

19.02.2004


Slow-moving ground water slows down water-quality improvements in Chesapeake Bay Ground water supplies about half of the water and nitrogen to streams in the Chesapeake Bay watershed and is therefore an important pathway for nitrogen to reach the bay, according to a recent U.S. Geological Survey (USGS) study. Too many nutrients, most of all nitrogen, are the principal cause for poor water-quality conditions in the Chesapeake Bay.



The ground water moving to streams in the Bay watershed has an average age of 10 years. The relatively slow movement of ground water to streams and into the Bay will impact the “lag time” between implementation of management practices and improvement of water quality in the Bay. The Chesapeake Bay Program, a multi-agency watershed partnership, is implementing nutrient-reduction strategies in an attempt to improve water-quality conditions in the Bay by 2010.

“Over the past dozen years we have seen more than 3 million acres in the Bay watershed put under nutrient management plans,” said Chesapeake Bay Program Director Rebecca Hanmer. “This improved scientific understanding provided by the USGS will help us better estimate when we’ll see the benefits from these efforts and how much more is needed to bring back the Bay.”


The age of ground water in shallow aquifers underlying most of the Chesapeake Bay watershed ranges from less than 1 year to more than 50 years. The majority of the ground water (75 percent) is less than 13 years old, which is younger than previously thought.

The USGS study found that just over 50 percent of the water in a stream is from ground water with a range of 16 to 92 percent. Surface-water runoff and soil water supply the rest of the water to a stream; both have very young ages (hours to months).

Nitrogen in streams that drain to the Bay comes from both runoff and ground water. Nitrogen enters ground water from rainfall or through application of fertilizers and other practices associated with agricultural, suburban and urban areas. The USGS study estimated that on average 48 percent of the total nitrogen load in a stream was transported through ground water, with a range of 17 to 80 percent in different streams.

“Knowing the amount, age and nitrogen content of ground water entering streams helps explain some of the reasons for the relatively slow improvements in water quality of rivers draining to the Bay,” said Scott Phillips, the USGS Chesapeake Bay coordinator and one of the investigators on the study. “The lessons learned from Chesapeake Bay will also help guide management decisions for protecting water quality in other areas of the nation.”

The findings of the USGS Chesapeake Bay ground-water study are summarized in a fact sheet, “The Influence of Ground Water on Nitrogen Delivery to the Chesapeake Bay,” (USGS Fact Sheet 091-03) and a comprehensive technical report, “Residence Times and Nitrate Transport in Ground Water Discharging to Streams in the Chesapeake Bay Watershed,” Water-Resources Investigations Report 03-4035. More information about USGS studies to help with the protection and restoration of the Chesapeake Bay and its watershed can be found on http://Chesapeake.usgs.gov.


The USGS serves the nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy and mineral resources; and enhance and protect our quality of life.

Kathleen Gohn | U.S. Geological Survey
Further information:
http://www.usgs.gov/public/press/public_affairs/press_releases/pr1854m.html
http://Chesapeake.usgs.gov

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>