Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earth’s Core is a Recycling Product


The planets of the solar system, including the Earth, formed about four and a half billion years ago from a swirling disk of gas and dust that was left over from the newly formed Sun. However, we do not understand, why the Earth ended up being different from other Earth-like or «terrestrial» planets and how the earliest features, like the metallic core, developed. Research at ETH Zurich by Professor Alex Halliday, to be published in this week’s edition of Nature, claims to have found some answers.

It has generally been assumed that the Earth’s metallic core, which generates the magnetic field, formed by segregating dense metallic iron from the accumulated mixture of metal and silicate that was the primitive Earth. New modelling provides evidence that the core was most likely partly built by direct mixing of earlier formed planetary cores during extremely energetic collisions. Surprisingly, these proto-planets appear not to have had chemical compositions like the present Earth or even its closest neighbour the Moon. Instead, some of them were more like Mars. Indeed, Mars may be a very good analogue of what the Earth was like in its earliest stages of development.

«Embryoplanets» formed Earth

The Earth-like planets, including also Mercury, Venus and Mars, are thought to have been built up gradually, initially by sticking together of dust and rocky debris. When these objects reached the size of a kilometre or so gravity would have started to exert a major influence and a process called runaway growth would have consumed all of the debris in the vicinity. The bigger the planet the stronger its gravity and so the more it will attract other objects. However, this only builds objects that are about 1% of the mass of the Earth. Nearly all of the material in the inner solar system would then have been in the form of numerous roughly 1,000 km diameter planetary embryos. To get objects to be as big as the Earth requires that these embryos repeatedly collide by chance and gradually fuse into a much smaller number of discrete planets as we have today. These collisions would have been incredibly energetic and would have melted the colliding objects and even vaporized some of the rock and metal. It is thought that the Earth’s Moon formed from the debris produced in such a collision.

Date of Earth formation is hard to predict

Because this collision process is somewhat random it is also hard to predict. However, the various models that have been proposed differ with respect to the amount of time over which it is expected that the Earth would have taken to form. Some theories have predicted that the Earth would have formed in much less than one million years. Other, more widely accepted theories predict that it took ten to a hundred million years. Still other schools of thought have proposed something between these extremes. Extinct radioactive isotopes have proved particularly powerful in defining just how quickly planet formation occurred - allowing these theories to be tested. The isotopes of tungsten and lead are especially useful because they have been affected by the decay of radioactive hafnium and uranium respectively. The biggest change in hafnium to tungsten and uranium to lead ratio takes place during the core formation that accompanies planetary growth. This allows the isotopic compositions of tungsten and lead to be used to determine a rate of planetary growth. The data indicate that the Earth formed over tens of millions of years and that the Moon formed late, consistent with the theories of more protracted formation.

Earth’s Core formed from Earlier Planets

However, Halliday shows that the story is not so simple. The two isotopic clocks used, hafnium-tungsten and uranium-lead, actually give distinctly different timescales for planet formation when calculated in the same manner. Halliday shows that there is only one likely explanation for this. Some portion of the Earth’s core formed as a result of the coagulation of earlier cores from the colliding planets. This is different from the general view of core formation - that the iron metal from each colliding planet first mixed with the rocky outer parts of the Earth and then simply settled to the centre of the Earth because of its higher density. Furthermore, it means that the time-scales of formation of the Earth and Moon have been under estimated. Recently it was estimated that the Moon-forming Giant Impact took place at about 30 million years after the start of the solar system. An age for the Moon of closer to 50 million years now appears more likely.

Earth and Mars are relatives

The isotopic compositions of tungsten and other elements in the Moon can be used to deduce what the chemical composition of its impacting parent planet was like. It turns out it was probably much more like Mars – a relatively volatile-rich and oxidized planet. The Earth and the proto-planets that made the Earth most probably lost volatiles during growth. Given this history a big question that remains is how Earth acquired its water. This is, in fact, one of the most puzzling remaining problems about Earth-like planets.

Alex Halliday | alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>