Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds shield pollutants going out to sea

04.02.2004


NASA scientists have the first evidence more regional pollution lurks in clouds than in clear skies off the Asian coastline. This finding has implications for space-based attempts to monitor global pollution and for other populated regions around the world.



Scientists estimate that roughly two-thirds of Asian pollution from the Pacific Rim flows to the western, North Pacific Ocean under cloudy conditions. They based the study on direct measurements taken in and around clouds by aircraft instruments during the Transport and Chemical Evolution over the Pacific (TRACE-P) field experiment.

"The idea that clouds can be associated with pollution transport is not new, but the TRACE-P observations provide the first evidence of a cloud-pollution link over a large region," said Jim Crawford, the TRACE-P deputy mission scientist at NASA Langley Research Center.


Scientists measured 32 percent more carbon monoxide, an indicator of pollution, in cloudy regions of the lower atmosphere (troposphere) and 15 percent more in the upper troposphere as compared to pollution levels in clear skies. Scientists also found a similar relationship between clouds and other pollutants such as the greenhouse gases carbon dioxide and methane.

"Larger concentrations of pollution are being transported away from Asia under the cover of clouds than we expected," Crawford said. "This information is critical for interpreting pollution measurements from space."

The scientists think clouds could mask pollution from spacecraft sensors, so current predictions based on satellite observations alone could underestimate pollution levels. Researchers say they will need additional information from field studies that combine observations from satellites, aircraft and ground stations to determine the extent that clouds impact spacecraft-based measurements. The Journal of Geophysical Research-Atmospheres recently published a paper on the study.

Although the Asian-Pacific region was the focus of the study, scientists believe the relationship between clouds and pollution could also exist downstream from other populated regions of the world. The North American-North Atlantic and the African-South Atlantic regions are examples of areas where people can contribute to regional pollution.

Human activities, such as the burning of fossil fuels for household heating and industrial uses, and the burning of vegetation, called biomass burning, produce air pollution. Cold air masses or cold fronts flow eastward across Asia and lift the warm, polluted air mass in front of them.

The lifting caused by cold fronts, which are dominant during the springtime in Asia, induce cloud formation in the warm air mass. Thus the mechanism for cloud formation and the export of pollution is the same, leading to a link between clouds and pollution.

NASA’s Earth Science Enterprise funded this research in an effort to better understand and protect our home planet. TRACE-P, conducted from March to April 2001, is part of the long series of NASA Global Troposphere Experiments (GTE). The aim of GTE is to develop a better understanding of worldwide chemistry of the troposphere and to provide information that will allow scientists to more accurately understand how to use satellite observations for global air quality studies.

Julia Cole | GSFC
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>