Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds shield pollutants going out to sea

04.02.2004


NASA scientists have the first evidence more regional pollution lurks in clouds than in clear skies off the Asian coastline. This finding has implications for space-based attempts to monitor global pollution and for other populated regions around the world.



Scientists estimate that roughly two-thirds of Asian pollution from the Pacific Rim flows to the western, North Pacific Ocean under cloudy conditions. They based the study on direct measurements taken in and around clouds by aircraft instruments during the Transport and Chemical Evolution over the Pacific (TRACE-P) field experiment.

"The idea that clouds can be associated with pollution transport is not new, but the TRACE-P observations provide the first evidence of a cloud-pollution link over a large region," said Jim Crawford, the TRACE-P deputy mission scientist at NASA Langley Research Center.


Scientists measured 32 percent more carbon monoxide, an indicator of pollution, in cloudy regions of the lower atmosphere (troposphere) and 15 percent more in the upper troposphere as compared to pollution levels in clear skies. Scientists also found a similar relationship between clouds and other pollutants such as the greenhouse gases carbon dioxide and methane.

"Larger concentrations of pollution are being transported away from Asia under the cover of clouds than we expected," Crawford said. "This information is critical for interpreting pollution measurements from space."

The scientists think clouds could mask pollution from spacecraft sensors, so current predictions based on satellite observations alone could underestimate pollution levels. Researchers say they will need additional information from field studies that combine observations from satellites, aircraft and ground stations to determine the extent that clouds impact spacecraft-based measurements. The Journal of Geophysical Research-Atmospheres recently published a paper on the study.

Although the Asian-Pacific region was the focus of the study, scientists believe the relationship between clouds and pollution could also exist downstream from other populated regions of the world. The North American-North Atlantic and the African-South Atlantic regions are examples of areas where people can contribute to regional pollution.

Human activities, such as the burning of fossil fuels for household heating and industrial uses, and the burning of vegetation, called biomass burning, produce air pollution. Cold air masses or cold fronts flow eastward across Asia and lift the warm, polluted air mass in front of them.

The lifting caused by cold fronts, which are dominant during the springtime in Asia, induce cloud formation in the warm air mass. Thus the mechanism for cloud formation and the export of pollution is the same, leading to a link between clouds and pollution.

NASA’s Earth Science Enterprise funded this research in an effort to better understand and protect our home planet. TRACE-P, conducted from March to April 2001, is part of the long series of NASA Global Troposphere Experiments (GTE). The aim of GTE is to develop a better understanding of worldwide chemistry of the troposphere and to provide information that will allow scientists to more accurately understand how to use satellite observations for global air quality studies.

Julia Cole | GSFC
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>