Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clouds shield pollutants going out to sea


NASA scientists have the first evidence more regional pollution lurks in clouds than in clear skies off the Asian coastline. This finding has implications for space-based attempts to monitor global pollution and for other populated regions around the world.

Scientists estimate that roughly two-thirds of Asian pollution from the Pacific Rim flows to the western, North Pacific Ocean under cloudy conditions. They based the study on direct measurements taken in and around clouds by aircraft instruments during the Transport and Chemical Evolution over the Pacific (TRACE-P) field experiment.

"The idea that clouds can be associated with pollution transport is not new, but the TRACE-P observations provide the first evidence of a cloud-pollution link over a large region," said Jim Crawford, the TRACE-P deputy mission scientist at NASA Langley Research Center.

Scientists measured 32 percent more carbon monoxide, an indicator of pollution, in cloudy regions of the lower atmosphere (troposphere) and 15 percent more in the upper troposphere as compared to pollution levels in clear skies. Scientists also found a similar relationship between clouds and other pollutants such as the greenhouse gases carbon dioxide and methane.

"Larger concentrations of pollution are being transported away from Asia under the cover of clouds than we expected," Crawford said. "This information is critical for interpreting pollution measurements from space."

The scientists think clouds could mask pollution from spacecraft sensors, so current predictions based on satellite observations alone could underestimate pollution levels. Researchers say they will need additional information from field studies that combine observations from satellites, aircraft and ground stations to determine the extent that clouds impact spacecraft-based measurements. The Journal of Geophysical Research-Atmospheres recently published a paper on the study.

Although the Asian-Pacific region was the focus of the study, scientists believe the relationship between clouds and pollution could also exist downstream from other populated regions of the world. The North American-North Atlantic and the African-South Atlantic regions are examples of areas where people can contribute to regional pollution.

Human activities, such as the burning of fossil fuels for household heating and industrial uses, and the burning of vegetation, called biomass burning, produce air pollution. Cold air masses or cold fronts flow eastward across Asia and lift the warm, polluted air mass in front of them.

The lifting caused by cold fronts, which are dominant during the springtime in Asia, induce cloud formation in the warm air mass. Thus the mechanism for cloud formation and the export of pollution is the same, leading to a link between clouds and pollution.

NASA’s Earth Science Enterprise funded this research in an effort to better understand and protect our home planet. TRACE-P, conducted from March to April 2001, is part of the long series of NASA Global Troposphere Experiments (GTE). The aim of GTE is to develop a better understanding of worldwide chemistry of the troposphere and to provide information that will allow scientists to more accurately understand how to use satellite observations for global air quality studies.

Julia Cole | GSFC
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>