Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Ozone-destroying Molecule

03.02.2004


For years, scientists theorized that a molecule called ClOOCl in the stratosphere played a key role in destroying ozone. Now, using measurements from a NASA aircraft laboratory flying over the Arctic, Harvard scientist Rick Stimpfle and colleagues observed the molecule for the first time. They report their discovery in the Journal of Geophysical Research-Atmospheres, published by the American Geophysical Union.

"We knew from observations dating from 1987, that the high ozone loss was linked with high [levels of] chlorine monoxide, but we had never actually detected the ClOOCl before," Stimpfle said in an interview. The common name atmospheric scientists use for ClOOCl, he said, is "chlorine dimer" - two identical chlorine-based molecules, ClO or chlorine monoxide and - bonded together. The rare dimer exists only in the particularly cold stratosphere over polar regions where chlorine monoxide levels are relatively high. "Most of the chlorine in the stratosphere," Stimpfle adds, "continues to come from human-induced sources."

ClOOCl triggers ozone destruction, he explains, in three basic steps:



1. ClOOCl absorbs sunlight and breaks into two chlorine atoms and an oxygen molecule.

2. The two chlorine atoms react with two ozone molecules, forming two chlorine monoxide molecules and two oxygen molecules.

3. The two chlorine monoxide molecules then react with each other to reform ClOOCl.

"You are now back to where you started with respect to the ClOOCl molecule," Stimpfle says, "but in the process you have converted two ozone molecules into three oxygen molecules. This is the definition of ozone loss."

These results were acquired during a joint US-European science mission, SOLVE/THESEO-2000, based in Kiruna, Sweden, from November 1999 to March 2000. A NASA ER-2 aircraft - essentially a U2 - flew into Russian air space for the first time with the cooperation of Russian authorities, Stimpfle says, for the purpose of collecting scientific data of interest to the world community. The instrument used to measure ClOOCl was designed to detect several important inorganic chlorine species and was housed in a wing pod of the ER-2.

This work was funded by the NASA Upper Atmospheric Research Program.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>