Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Ozone-destroying Molecule

03.02.2004


For years, scientists theorized that a molecule called ClOOCl in the stratosphere played a key role in destroying ozone. Now, using measurements from a NASA aircraft laboratory flying over the Arctic, Harvard scientist Rick Stimpfle and colleagues observed the molecule for the first time. They report their discovery in the Journal of Geophysical Research-Atmospheres, published by the American Geophysical Union.

"We knew from observations dating from 1987, that the high ozone loss was linked with high [levels of] chlorine monoxide, but we had never actually detected the ClOOCl before," Stimpfle said in an interview. The common name atmospheric scientists use for ClOOCl, he said, is "chlorine dimer" - two identical chlorine-based molecules, ClO or chlorine monoxide and - bonded together. The rare dimer exists only in the particularly cold stratosphere over polar regions where chlorine monoxide levels are relatively high. "Most of the chlorine in the stratosphere," Stimpfle adds, "continues to come from human-induced sources."

ClOOCl triggers ozone destruction, he explains, in three basic steps:



1. ClOOCl absorbs sunlight and breaks into two chlorine atoms and an oxygen molecule.

2. The two chlorine atoms react with two ozone molecules, forming two chlorine monoxide molecules and two oxygen molecules.

3. The two chlorine monoxide molecules then react with each other to reform ClOOCl.

"You are now back to where you started with respect to the ClOOCl molecule," Stimpfle says, "but in the process you have converted two ozone molecules into three oxygen molecules. This is the definition of ozone loss."

These results were acquired during a joint US-European science mission, SOLVE/THESEO-2000, based in Kiruna, Sweden, from November 1999 to March 2000. A NASA ER-2 aircraft - essentially a U2 - flew into Russian air space for the first time with the cooperation of Russian authorities, Stimpfle says, for the purpose of collecting scientific data of interest to the world community. The instrument used to measure ClOOCl was designed to detect several important inorganic chlorine species and was housed in a wing pod of the ER-2.

This work was funded by the NASA Upper Atmospheric Research Program.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>