Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing greenhouse gases lead to dramatic thinning of the upper atmosphere

02.02.2004

The highest layers of the Earth’s atmosphere are cooling and contracting, most likely in response to increasing levels of greenhouse gases, according to a new study by scientists at the Naval Research Laboratory (NRL). This contraction could result in longer orbital lifetimes for both satellites and hazardous space debris.

In a paper to be published February 5 in the Journal of Geophysical Research - Space Physics, John Emmert, Michael Picone, Judith Lean, and Stephen Knowles report that the average density of the thermosphere has decreased by about 10 percent during the past 35 years. The thermosphere is the highest layer in the atmosphere, and begins at an altitude of about 90 kilometers [60 miles].

The study utilized orbital tracking data for 27 space objects that have been aloft for over 30 years and whose closest approach to the Earth ranges from 200-800 kilometers [100-500 miles]. The Space Shuttle typically orbits at 300-450 kilometers [200-280 miles], and the International Space Station is at an altitude of about 400 kilometers [200 miles]. Although the atmosphere is extremely thin in this region (the air at the Earth’s surface is a trillion times thicker), it is enough to exert a drag force on satellites, causing their orbits to decay slowly and ultimately resulting in a fiery disintegration at lower altitudes. By analyzing changes in the orbits of the selected objects, the scientists derived the yearly average density encountered by each object. After adjusting for other factors, the data from every object indicated a long-term decline in the density of the thermosphere.

This decrease in density had been predicted by theoretical simulations of the upper atmosphere’s response to increasing carbon dioxide and other greenhouse gases. In the troposphere (the lowest layer of the atmosphere) greenhouse gases trap infrared radiation, causing the well-known "global warming" effect. Higher in the atmosphere, above about 12 kilometers [seven miles], however, these gases actually enhance the ability of the atmosphere to radiate heat out to space, thereby causing a cooling effect. As the amount of carbon dioxide increases, the upper atmosphere becomes cooler and contracts, bringing lower-density gas to lower heights. Consequently, at a given height, the average density will decrease. Because each layer of the atmosphere rests on the layers below it, small changes at lower altitudes become amplified at higher altitudes. The NRL study found that the observed decrease in density depends on height in the same way as predicted by the theoretical simulations, indicating that greenhouse gases are a likely source of the change.

An extreme example of the greenhouse gas effect can be found on Venus, whose atmosphere is 96 percent carbon dioxide (compared to trace amounts in the Earth’s atmosphere), resulting in a very hot lower atmosphere 400 degrees Celsius [800 degrees Fahrenheit] and a very cold and compact upper atmosphere.

These new results verify and significantly expand a limited earlier investigation, by scientists at The George Washington University, which also used orbital data to derive a long-term decrease in thermospheric density. The new study utilizes more orbital data over a longer period of time and employs more precise methods of analysis. By carefully examining all potential sources of error, Emmert’s team has provided solid evidence that the trend is neither artificial nor the result of physical processes other than internal atmospheric cooling.

Based on this analysis and projections of carbon dioxide levels in the atmosphere, the density at thermospheric heights could be cut in half by the year 2100. This change may present mixed blessings: while operational satellites will be able to stay aloft longer, using less fuel, so will damaging spacecraft debris, potentially increasing the frequency of collisions.

The research was funded by the Office of Naval Research.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>