Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Increasing greenhouse gases lead to dramatic thinning of the upper atmosphere


The highest layers of the Earth’s atmosphere are cooling and contracting, most likely in response to increasing levels of greenhouse gases, according to a new study by scientists at the Naval Research Laboratory (NRL). This contraction could result in longer orbital lifetimes for both satellites and hazardous space debris.

In a paper to be published February 5 in the Journal of Geophysical Research - Space Physics, John Emmert, Michael Picone, Judith Lean, and Stephen Knowles report that the average density of the thermosphere has decreased by about 10 percent during the past 35 years. The thermosphere is the highest layer in the atmosphere, and begins at an altitude of about 90 kilometers [60 miles].

The study utilized orbital tracking data for 27 space objects that have been aloft for over 30 years and whose closest approach to the Earth ranges from 200-800 kilometers [100-500 miles]. The Space Shuttle typically orbits at 300-450 kilometers [200-280 miles], and the International Space Station is at an altitude of about 400 kilometers [200 miles]. Although the atmosphere is extremely thin in this region (the air at the Earth’s surface is a trillion times thicker), it is enough to exert a drag force on satellites, causing their orbits to decay slowly and ultimately resulting in a fiery disintegration at lower altitudes. By analyzing changes in the orbits of the selected objects, the scientists derived the yearly average density encountered by each object. After adjusting for other factors, the data from every object indicated a long-term decline in the density of the thermosphere.

This decrease in density had been predicted by theoretical simulations of the upper atmosphere’s response to increasing carbon dioxide and other greenhouse gases. In the troposphere (the lowest layer of the atmosphere) greenhouse gases trap infrared radiation, causing the well-known "global warming" effect. Higher in the atmosphere, above about 12 kilometers [seven miles], however, these gases actually enhance the ability of the atmosphere to radiate heat out to space, thereby causing a cooling effect. As the amount of carbon dioxide increases, the upper atmosphere becomes cooler and contracts, bringing lower-density gas to lower heights. Consequently, at a given height, the average density will decrease. Because each layer of the atmosphere rests on the layers below it, small changes at lower altitudes become amplified at higher altitudes. The NRL study found that the observed decrease in density depends on height in the same way as predicted by the theoretical simulations, indicating that greenhouse gases are a likely source of the change.

An extreme example of the greenhouse gas effect can be found on Venus, whose atmosphere is 96 percent carbon dioxide (compared to trace amounts in the Earth’s atmosphere), resulting in a very hot lower atmosphere 400 degrees Celsius [800 degrees Fahrenheit] and a very cold and compact upper atmosphere.

These new results verify and significantly expand a limited earlier investigation, by scientists at The George Washington University, which also used orbital data to derive a long-term decrease in thermospheric density. The new study utilizes more orbital data over a longer period of time and employs more precise methods of analysis. By carefully examining all potential sources of error, Emmert’s team has provided solid evidence that the trend is neither artificial nor the result of physical processes other than internal atmospheric cooling.

Based on this analysis and projections of carbon dioxide levels in the atmosphere, the density at thermospheric heights could be cut in half by the year 2100. This change may present mixed blessings: while operational satellites will be able to stay aloft longer, using less fuel, so will damaging spacecraft debris, potentially increasing the frequency of collisions.

The research was funded by the Office of Naval Research.

Harvey Leifert | AGU
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>