Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see ocean conditions in 3-D, improve forecasts

30.01.2004


Freighters, cruise lines, marine rescuers and coastal managers are among those who could benefit from prototype three-dimensional, three-day ocean condition forecasts created with the assistance of NASA satellite data, computer models and on-site ocean measurements.


WIND DATA FROM QUIKSCAT
This is a QuikSCAT image of winds on the surface of the Pacific Ocean on January 8, 2004. Credit: NASA JPL



Scientists hope to forecast ocean conditions several days ahead, much like regional weather forecasts broadcast on television news. "It’s a three-dimensional look at the ocean, from the surface to the ocean bottom," said Yi Chao of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., lead scientist on the project. Chao and three colleagues presented their real-time operational forecast system for the Central California Ocean at the recent Annual Meeting of the American Meteorological Society (AMS).

The end product from our 3-D ocean model includes temperature, salinity and current," Chao said. These are available as text or binary data, or can be visualized for further analysis. Seeing the ocean in three dimensions, and knowing how it will behave from top to bottom, will save fuel costs for large shippers by steering away from choppy waters, or moving with the current. The data will also help Coast Guard rescuers, as they would be able to determine which direction people stranded in the water would drift. Several satellite measurements provide input into the forecast system, including near-real time wind data from the Quikscat instrument on NASA’s SeaWinds satellite; ocean height, including waves, measured from NASA’s Topex/Poseidon and Jason satellites; sea surface temperatures measured by the National Oceanic and Atmospheric Administration’s (NOAA) Geostationary Operational Environmental Satellites Advanced Very High Resolution Radiometer instrument.


Aircraft data from the Office of Naval Research is used on cloudy days, when satellites cannot see the ocean surface. A variety of sensors, such as sea gliders that can dive from the ocean surface to several hundred meters depth, ships, and autonomous underwater vehicles, provide ocean water temperature and salinity data. Meters measure ocean currents, and shore- based high-frequency radars provide ocean surface current data. Once these data were input into the forecast system, existing ocean conditions were simulated in 3-D, within 24 hours behind real-time, and more accurate three-day forecasts were then generated in 3-D.

Chao said the NASA 3-D ocean models were useful in planning daily ocean measurement missions during a field campaign conducted last summer in Monterey Bay, Calif. Mission scientists used the forecasts to find interesting areas to observe, such as where cold water from the ocean bottom came up to the surface. Wherever the models seemed to generate an error, more observations were planned, so the forecasts could be improved.

Data is only available for Monterey Bay, where the prototype system was first tested. The next test site will stretch along the coast from San Diego to Baja, Calif. System data are not yet available for public use. Sixteen institutions are evaluating the system or providing data. The researchers hope to eventually issue round-the-clock operational forecasts along all U.S. coastal areas.

In addition to helping with ocean condition forecasts, NASA also is interested in studying the coastal ocean to monitor resources for many purposes including recreation, conservation and commerce. Satellites provide the high-resolution imagery to accomplish this task.


NASA and the Office of Naval Research jointly funded this research. The forecast system exemplifies NASA’s Earth Science Enterprise Coastal Management national application, where agency aerospace research and development of science and technologies are being used with other federal agencies such as NOAA.

Rob Gutro | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0113forecastca.html

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>