Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statistics research offers new forecast of El Niño

27.01.2004


A statistical model from Ohio State University is forecasting sea surface temperatures in the tropical Pacific Ocean in a new way.



The model gives scientists a way to quantify the uncertainty that surrounds the climatic phenomenon known as El Niño, which triggers severe weather changes in North and South America and Australia and endangers crops and wildlife, said Noel Cressie, professor of statistics and director of the university’s Program in Spatial Statistics and Environmental Sciences.

While there are many methods for forecasting El Niño, this model is unique because it includes detailed measures of uncertainty, explained Cressie. Such measures are important for quantifying risk when, for example, farmers and insurance companies make decisions about the next harvest.


“This is a Bayesian statistical model -- it represents a new paradigm in geophysical modeling, where all sources of uncertainties are accounted for in a melding of geophysical knowledge and statistical description,” Cressie said.

In this case, the strength of westerly winds in a particular location of the tropical Pacific is a key component. Although the research team discovered this relationship through their own exploratory spatial data analysis, this experimental finding fits with one dominant scientific paradigm that westerly wind bursts are an important factor in the pooling of warm surface waters in the eastern Pacific.

Peruvians named the warming El Niño, or “The Christ Child,” because it typically arrives in December during the years it occurs.

Drawing on decades of data for wind, air pressure, and sea surface temperature, the model can forecast El Niño six months in advance -- long enough for farmers and commercial fishermen to plan for the coming season.

The model provides a range of probable sea surface temperatures in each forecast. Over the last five years, only once did the actual temperature not fit within the model’s predicted range.

For the first time, a tool based on the model is available on the Web (http://www.stat.ohio-state.edu/~sses/collab_enso.php), so scientists and the public can view animations of El Niño forecasts from January 1985 through May 2004, and compare the forecasts to observed temperatures in the tropical Pacific.

Normally, temperatures of surface waters in the western Pacific are 6 to 8 degrees Celsius (10 to 15 degrees Fahrenheit) warmer than in the east. But during an El Niño, the temperature differential reverses.

The nutrient-poor warm water forces the fish that normally thrive off the west coast of South America to go elsewhere to find food. Birds that would feed on the fish die off, and the local fishing economy suffers.

El Niño causes far-reaching weather events as well, including drought and heatwaves across Australia, torrential rainfall in Central and South America, and heavy winter snows and floods in the southern United States -- all of which affect water resources and food supply.

Scientists don’t fully understand the factors that cause an El Niño, and models of such large environmental systems are very complicated.

But it’s in just such a situation -- where there is a considerable amount of uncertainty involved -- that a statistical model that accounts for physical understanding can do very well, Cressie explained.

The Web site where the model’s results are presented grew out of a paper that Cressie and his colleagues -- Mark Berliner, professor of statistics at Ohio State, and Christopher K. Wikle, associate professor of statistics at the University of Missouri -- had previously published in the Journal of Climate in 2000.

The U.S. Environmental Protection Agency funded this work.


Contact: Noel Cressie, (614) 292-5194; Cressie.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/ninostat.htm
http://www.stat.ohio-state.edu/~sses/collab_enso.php

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>