Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puzzling height of polar clouds revealed

26.01.2004


Scientists have discovered why icy clouds found at the edge of space are higher at the South Pole than at the North. The answer to this puzzle is that the intensity of solar radiation at the South Pole is six percent higher than at the North Pole during the austral summer, as the Earth comes closer to the sun. New research from British Antarctic Survey and University of Illinois is reported in this month’s Geophysical Research Letters (published online 29 January 2004). This research helps understand the role of these clouds as indicators of climate change.



Polar mesospheric clouds form at an altitude of 52 miles at the summertime polar caps when temperatures in the mesosphere fall below -125 degrees Celsius. Scientists were puzzled why clouds at the South Pole were on average consistently two miles higher than those found in the North. To confirm these geographic differences, measurements were taken at British Antarctic Survey’s Rothera Research Station, 1500 miles from the South Pole, at the same latitude as measurements made in the northern hemisphere (68°). Using a laser radar (LIDAR) to bounce light pulses off the clouds and measure their distance from earth, the researchers demonstrated that even though the clouds were slightly lower at Rothera than at the South Pole, they were considerably higher than at similar latitudes in the northern hemisphere.

Since the Earth’s orbit is not exactly circular, solar radiation at the South Pole is six percent higher that at the North as the Earth orbits the Sun. Using a model to explore temperature and vertical wind distribution, the researchers concluded that this increased solar input heats the polar ozone and creates a vertical upwelling that forces the clouds up higher than in the north.


Polar mesospheric clouds have brightened by approximately 15% over the last twenty years demonstrating a cooling of the mesosphere. This cooling intensifies as the atmosphere near the Earth’s surface warms, so polar mesospheric clouds may be an indicator of long-term global climate change.

Pat Espy, scientist at the British Antarctic Survey explains: "The growing brightness of polar mesospheric clouds is attributed to increasing levels of atmospheric carbon dioxide and methane, which in the upper atmosphere makes the Earth a more efficient radiator leading to cooler temperatures. By understanding more about how and where these clouds form scientists can use them as a measurement of long-term global climate change."

Espy and his team took measurements using a LIDAR (Light Detecting and Ranging System), which transmits a light beam up to 52 miles into the mesosphere.

Athena Dinar | alfa
Further information:
http://www.antarctica.ac.uk

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>