Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puzzling height of polar clouds revealed

26.01.2004


Scientists have discovered why icy clouds found at the edge of space are higher at the South Pole than at the North. The answer to this puzzle is that the intensity of solar radiation at the South Pole is six percent higher than at the North Pole during the austral summer, as the Earth comes closer to the sun. New research from British Antarctic Survey and University of Illinois is reported in this month’s Geophysical Research Letters (published online 29 January 2004). This research helps understand the role of these clouds as indicators of climate change.



Polar mesospheric clouds form at an altitude of 52 miles at the summertime polar caps when temperatures in the mesosphere fall below -125 degrees Celsius. Scientists were puzzled why clouds at the South Pole were on average consistently two miles higher than those found in the North. To confirm these geographic differences, measurements were taken at British Antarctic Survey’s Rothera Research Station, 1500 miles from the South Pole, at the same latitude as measurements made in the northern hemisphere (68°). Using a laser radar (LIDAR) to bounce light pulses off the clouds and measure their distance from earth, the researchers demonstrated that even though the clouds were slightly lower at Rothera than at the South Pole, they were considerably higher than at similar latitudes in the northern hemisphere.

Since the Earth’s orbit is not exactly circular, solar radiation at the South Pole is six percent higher that at the North as the Earth orbits the Sun. Using a model to explore temperature and vertical wind distribution, the researchers concluded that this increased solar input heats the polar ozone and creates a vertical upwelling that forces the clouds up higher than in the north.


Polar mesospheric clouds have brightened by approximately 15% over the last twenty years demonstrating a cooling of the mesosphere. This cooling intensifies as the atmosphere near the Earth’s surface warms, so polar mesospheric clouds may be an indicator of long-term global climate change.

Pat Espy, scientist at the British Antarctic Survey explains: "The growing brightness of polar mesospheric clouds is attributed to increasing levels of atmospheric carbon dioxide and methane, which in the upper atmosphere makes the Earth a more efficient radiator leading to cooler temperatures. By understanding more about how and where these clouds form scientists can use them as a measurement of long-term global climate change."

Espy and his team took measurements using a LIDAR (Light Detecting and Ranging System), which transmits a light beam up to 52 miles into the mesosphere.

Athena Dinar | alfa
Further information:
http://www.antarctica.ac.uk

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>