Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puzzling height of polar clouds revealed

26.01.2004


Scientists have discovered why icy clouds found at the edge of space are higher at the South Pole than at the North. The answer to this puzzle is that the intensity of solar radiation at the South Pole is six percent higher than at the North Pole during the austral summer, as the Earth comes closer to the sun. New research from British Antarctic Survey and University of Illinois is reported in this month’s Geophysical Research Letters (published online 29 January 2004). This research helps understand the role of these clouds as indicators of climate change.



Polar mesospheric clouds form at an altitude of 52 miles at the summertime polar caps when temperatures in the mesosphere fall below -125 degrees Celsius. Scientists were puzzled why clouds at the South Pole were on average consistently two miles higher than those found in the North. To confirm these geographic differences, measurements were taken at British Antarctic Survey’s Rothera Research Station, 1500 miles from the South Pole, at the same latitude as measurements made in the northern hemisphere (68°). Using a laser radar (LIDAR) to bounce light pulses off the clouds and measure their distance from earth, the researchers demonstrated that even though the clouds were slightly lower at Rothera than at the South Pole, they were considerably higher than at similar latitudes in the northern hemisphere.

Since the Earth’s orbit is not exactly circular, solar radiation at the South Pole is six percent higher that at the North as the Earth orbits the Sun. Using a model to explore temperature and vertical wind distribution, the researchers concluded that this increased solar input heats the polar ozone and creates a vertical upwelling that forces the clouds up higher than in the north.


Polar mesospheric clouds have brightened by approximately 15% over the last twenty years demonstrating a cooling of the mesosphere. This cooling intensifies as the atmosphere near the Earth’s surface warms, so polar mesospheric clouds may be an indicator of long-term global climate change.

Pat Espy, scientist at the British Antarctic Survey explains: "The growing brightness of polar mesospheric clouds is attributed to increasing levels of atmospheric carbon dioxide and methane, which in the upper atmosphere makes the Earth a more efficient radiator leading to cooler temperatures. By understanding more about how and where these clouds form scientists can use them as a measurement of long-term global climate change."

Espy and his team took measurements using a LIDAR (Light Detecting and Ranging System), which transmits a light beam up to 52 miles into the mesosphere.

Athena Dinar | alfa
Further information:
http://www.antarctica.ac.uk

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>