Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


If Airbags Work Well With "Opportunity," Too, Then Mars Landing Sites Can Be Chosen More Boldly, Says UB Geologist


The anticipated Mars landing on Jan. 24 of the Opportunity rover will be a bit more challenging than the Spirit’s bounce onto the red planet earlier this month, according to a University at Buffalo geologist, but if it’s successful, then scientists will be able to be much bolder about selecting future Mars landing sites.

Apollinaris Patera, a volcano on the surface of Mars, could be a future landing site, says a UB planetary volcanologist, if the airbag technology proves as successful with "Opportunity" as it has been with "Spirit."

"If both of these landers survive with airbag technology, then it blows the doors wide open for future Mars landing sites with far more interesting terrain," said Tracy Gregg, Ph.D., University at Buffalo assistant professor of geology in the UB College of Arts and Sciences and a planetary volcanologist.

Gregg, who headed a national conference at UB in 1999 regarding the selection of future Mars landing sites, is chair of the geologic mapping standards committee of the NASA Planetary Cartography Working Group.

"With the success of Spirit, I feel so much more confident about future Mars landers," said Gregg. "The airbags seem to be able to withstand quite a bit of trauma."

Gregg remembers attending a conference presentation a few years ago by Matt P. Golombek, Ph.D., planetary geologist at the Jet Propulsion Laboratory and, at the time, the principal investigator on the Mars Pathfinder mission, in which he proposed the airbag landing technology.

"He listed the 15 steps that had to happen at exactly the right time and in exactly the right way in order for this technology to work. The general mood in the lecture hall was, ’Yeah, right, good luck,’" Gregg remembered. "Well, the next year, he got up to a standing-room-only crowd at a meeting of the same organization and he described all of the same steps that the Pathfinder had successfully completed on Mars. He got a standing ovation."

The selection of Mars landing sites is a complex balancing act, Gregg says, where the potential for important scientific discoveries has to be balanced against the requirement that sites be absolutely safe so that the rovers can perform well and send data back to earth.

Both Gusev Crater, where the Spirit landed, and Sinus Meridiani, where Opportunity is scheduled to land, were chosen, Gregg says, because they are not expected to have large boulders, steep cliffs or deep craters that could pop an airbag or swallow up the lander preventing the transmission of radio signals.

"If Opportunity survives the landing on Jan. 24, there is a high possibility that we will get to see layers of ancient rock, deposited when Mars was warm and wet and could have supported life," she says. "Evidence of river channels, which we expect to see at Sinus Meridiani, could be remnants of that early, warm history."

When pictures start coming back from Opportunity, Gregg will have her eyes peeled, searching for layers in the walls of the dried-up river channels.

"Those layers could be lava flows," explained Gregg, noting that often the best place to look for evidence of life on any planet is near volcanoes.

"That may sound counterintuitive, but think about Yellowstone National Park, which really is nothing but a huge volcano," she says. "Even when the weather in Wyoming is 20 below zero, all the geysers, which are fed by volcanic heat, are swarming with bacteria and all kinds of happy little things cruising around in the water.

"So, since we think that the necessary ingredients for life on earth were water and heat, we are looking for the same things on Mars, and while we definitely have evidence of water there, we still are looking for a source of heat."

Gregg hopes that a future landing Mars site will be near a volcano, particularly one called Apollinaris Patera.

"A landing site near a volcano might be possible, now that the airbag technology has worked so wonderfully," she says.

Ellen Goldbaum | University at Buffalo
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>