Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean life depends on single circulation pattern in Southern Hemisphere

31.12.2003


Study raises questions about potential impact of climate change

A study has shown that marine life around the world is surprisingly dependent on a single ocean circulation pattern in the Southern Hemisphere where nutrient-rich water rises from the deep and spreads across the seas.

The results suggest that ocean life may be more sensitive to climate change than previously believed because most global warming predictions indicate that major ocean circulation patterns will change. While oceanographers have identified many ocean circulation patterns, the study found that three-quarters of all biological activity in the oceans relies on this single pattern.



"When we shut off this one pathway in our models, biological productivity in the oceans drops to one-quarter of what it is today," said Jorge Sarmiento, a Princeton oceanographer who led the study published in the Jan. 1, 2004, issue of Nature. Marine organisms account for half all biological productivity on Earth.

The discovery helps oceanographers settle a longstanding question about what keeps the world’s oceans fertile. Most biological activity in the ocean is concentrated near the surface where an abundance of microorganisms perform photosynthesis and support marine food chains. These organisms and their byproducts slowly sink from the surface, decomposing along the way and carrying nutrients to the deep ocean. Until now, it has not been clear how the surface becomes replenished with the nutrients that seemed lost to the deep ocean.

Previous research has shown that ocean water does not mix well across layers of equal density, which are mostly oriented horizontally in the ocean. Once the organic matter sinks to the abyss, it takes a long time for nutrients to cross the layers and return to the surface. Without a mechanism to bring deep water back to the surface, the oceans would lose about one-fiftieth of their nutrients to this sinking process each year, Sarmiento said.

Sarmiento and colleagues identified what amounts to an enormous conveyor belt that carries nutrient-rich seawater southward in the deep ocean, brings it to the surface in the Antarctic Ocean where the density layer barrier is weak and ships it north. The water sinks again in the Northern Hemisphere and starts over. The researchers discovered a chemical signature (the presence of high nitrate and low silicate levels) that is unique to this nutrient carrier, which is called the Subantarctic Mode Water, and used it to trace the influence of this water in surface waters around the world.

"It is really quite amazing," said Sarmiento. "I had no idea of the extent of its influence."

The SAMW is responsible for feeding nearly all the world’s oceans, except for the North Pacific, which is resupplied with nutrients through another circulation pattern, the researchers found.

The finding already has attracted interest among oceanographers. "They have clearly identified the pathway that counteracts the so-called biological pump, which acts to strip the surface layer of its nutrients," said Arnold Gordon of Columbia University. "One now wonders how global change will alter the efficiency of this pathway."

Sarmiento said the research group "is now hard at work investigating the details of this nutrient circulation pattern with an eye to examining how it might respond to global warming in model simulations."


Sarmiento conducted the study in collaboration with Nicholas Gruber of the University of California-Los Angeles, Mark Brzezinski of the University of California-Santa Barbara and John Dunne of the Geophysical Fluid Dynamics Laboratory in Princeton. The research was supported by the National Science Foundation, the National Oceanic and Atmospheric Administration and the Department of Energy.

Patty Allen | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>