Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean life depends on single circulation pattern in Southern Hemisphere

31.12.2003


Study raises questions about potential impact of climate change

A study has shown that marine life around the world is surprisingly dependent on a single ocean circulation pattern in the Southern Hemisphere where nutrient-rich water rises from the deep and spreads across the seas.

The results suggest that ocean life may be more sensitive to climate change than previously believed because most global warming predictions indicate that major ocean circulation patterns will change. While oceanographers have identified many ocean circulation patterns, the study found that three-quarters of all biological activity in the oceans relies on this single pattern.



"When we shut off this one pathway in our models, biological productivity in the oceans drops to one-quarter of what it is today," said Jorge Sarmiento, a Princeton oceanographer who led the study published in the Jan. 1, 2004, issue of Nature. Marine organisms account for half all biological productivity on Earth.

The discovery helps oceanographers settle a longstanding question about what keeps the world’s oceans fertile. Most biological activity in the ocean is concentrated near the surface where an abundance of microorganisms perform photosynthesis and support marine food chains. These organisms and their byproducts slowly sink from the surface, decomposing along the way and carrying nutrients to the deep ocean. Until now, it has not been clear how the surface becomes replenished with the nutrients that seemed lost to the deep ocean.

Previous research has shown that ocean water does not mix well across layers of equal density, which are mostly oriented horizontally in the ocean. Once the organic matter sinks to the abyss, it takes a long time for nutrients to cross the layers and return to the surface. Without a mechanism to bring deep water back to the surface, the oceans would lose about one-fiftieth of their nutrients to this sinking process each year, Sarmiento said.

Sarmiento and colleagues identified what amounts to an enormous conveyor belt that carries nutrient-rich seawater southward in the deep ocean, brings it to the surface in the Antarctic Ocean where the density layer barrier is weak and ships it north. The water sinks again in the Northern Hemisphere and starts over. The researchers discovered a chemical signature (the presence of high nitrate and low silicate levels) that is unique to this nutrient carrier, which is called the Subantarctic Mode Water, and used it to trace the influence of this water in surface waters around the world.

"It is really quite amazing," said Sarmiento. "I had no idea of the extent of its influence."

The SAMW is responsible for feeding nearly all the world’s oceans, except for the North Pacific, which is resupplied with nutrients through another circulation pattern, the researchers found.

The finding already has attracted interest among oceanographers. "They have clearly identified the pathway that counteracts the so-called biological pump, which acts to strip the surface layer of its nutrients," said Arnold Gordon of Columbia University. "One now wonders how global change will alter the efficiency of this pathway."

Sarmiento said the research group "is now hard at work investigating the details of this nutrient circulation pattern with an eye to examining how it might respond to global warming in model simulations."


Sarmiento conducted the study in collaboration with Nicholas Gruber of the University of California-Los Angeles, Mark Brzezinski of the University of California-Santa Barbara and John Dunne of the Geophysical Fluid Dynamics Laboratory in Princeton. The research was supported by the National Science Foundation, the National Oceanic and Atmospheric Administration and the Department of Energy.

Patty Allen | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>