Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black soot and snow: A warmer combination

23.12.2003


New research from NASA scientists suggests emissions of black soot alter the way sunlight reflects off snow. According to a computer simulation, black soot may be responsible for 25 percent of observed global warming over the past century.


SOOT PARTICLE UNDER A MICROSCOPE
Credit: D.M. Smith, University of Denver



Soot in the higher latitudes of the Earth, where ice is more common, absorbs more of the sun’s energy and warmth than an icy, white background. Dark-colored black carbon, or soot, absorbs sunlight, while lighter colored ice reflects sunlight.

Soot in areas with snow and ice may play an important role in climate change. Also, if snow- and ice-covered areas begin melting, the warming effect increases, as the soot becomes more concentrated on the snow surface. "This provides a positive feedback (i.e. warming); as glaciers and ice sheets melt, they tend to get even dirtier," said Dr. James Hansen, a researcher at NASA’s Goddard Institute for Space Studies, New York.


Hansen and Larissa Nazarenko, both of the Goddard Institute and Columbia University’s Earth Institute, found soot’s effect on snow albedo (solar energy reflected back to space), which has been neglected in previous studies, may be contributing to trends toward early springs in the Northern Hemisphere, thinning Arctic sea ice, melting glaciers and permafrost. Soot also is believed to play a role in changes in the atmosphere above the oceans and land.

"Black carbon reduces the amount of energy reflected by snow back into space, thus heating the snow surface more than if there were no black carbon," Hansen said.

Soot’s increased absorption of solar energy is especially effective in warming the world’s climate. "This forcing is unusually effective, causing twice as much global warming as a carbon-dioxide forcing of the same magnitude," Hansen noted.

Hansen cautioned, although the role of soot in altering global climate is substantial, it does not alter the fact greenhouse gases are the primary cause of climate warming during the past century. Such gases are expected to be the largest climate forcing for the rest of this century.

The researchers found that observed warming in the Northern Hemisphere was large in the winter and spring at middle and high latitudes. These observations were consistent with the researchers’ climate model simulations, which showed some of the largest warming effects occurred when there was heavy snow cover and sufficient sunlight.

Hansen and Nazarenko used a leading worldwide-climate computer model to simulate effects of greenhouse gases and other factors on world climate. The model incorporated data from NASA spacecraft that monitor the Earth’s surface, vegetation, oceans and atmospheric qualities. The calculated global warming from soot in snow and ice, by itself in an 1880-2000 simulation, accounted for 25 percent of observed global warming. NASA’s Terra and Aqua satellites are observing snow cover and reflectivity at multiple wavelengths, which allows quantitative monitoring of changing snow cover and effects of soot on snow.

The research is in the paper "Soot Climate Forcing via Snow and Ice Albedos," appearing online this week in the Proceedings of the National Academy of Sciences.

This research was funded by NASA’s Earth Science Enterprise. The Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth system science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

David Steitz | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2003/1223blacksoot.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>