Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landscapes on buried glaciers in Antarctica’s dry valleys help decipher recent ice ages on Mars

19.12.2003


Studies of the unique landscape in the Dry Valleys of Antarctica provide new insights into the origin of similar features on Mars and provide one line of evidence that suggests the Red Planet has recently experienced an ice age, according to a paper in this week’s issue of the journal Nature.

The distribution of hexagonal mounds and other features on the Martian surface at mid-latitudes similar to those in the Dry Valleys also supports previous scientific assertions that a significant amount of ice lies trapped beneath the Red Planet’s surface.

David Marchant, a Boston University researcher who has studied the Dry Valleys for 17 years, co-authored the paper with James W. Head (lead author), John Mustard and Ralph Milliken, at Brown University, and Mikhail Kreslavsky of Kharkov National University in Ukraine.



The National Science Foundation (NSF) supported Marchant’s work in the Dry Valleys, which helped underlie the assertions in the Nature paper. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering. NSF manages the U.S. Antarctic Program, which supports and coordinates virtually all U.S. scientific research on the southernmost continent.

Head, Mustard and Milliken were supported by NASA.

The floor of Antarctica’s Beacon Valley, in particular, is covered with hexagonal mounds that, from the air, resemble the patterns of cracked mud on a dry lakebed. The Dry Valleys mounds, however, often measure meters in diameter.

Although these polygon-shaped features occur throughout the Arctic and Antarctic, an unusual variety found in the western Dry Valleys region has received particular attention because it forms only in perennially frozen soils with significant ice content. These polygons form as sub-freezing temperatures fluctuate, causing the underlying ice to contract in a hexagonal pattern. As the ice contracts, fine sediments sift down into the cracks, leaving a coarse-grained deposit covering the ice.

The research reported in Nature shows that similar mounds and other formations that appear in the mid-to-high latitudes on Mars could indicate ice buried near the planet’s surface as well. Using new information on the global distribution of surface landforms on Mars, together with data gathered from NASA’s Mars Global Surveyor and Mars Odyssey missions, Head and other researchers were able to piece together a history of recent ice ages on Mars.

"The last ice age on Mars began about 2.1 million years ago and ended as recently as 400,000 years ago," according to Head.

Like ice ages on Earth, Martian ice ages are driven by variations in the planet’s orbit, particularly the tilt of the planet’s axis. But Martian ice ages, unlike ice ages on Earth, appear to begin as the polar regions warm, rather than cool.

Warming of the Martian Poles causes the planet’s ice caps to partially vaporize and release water vapor into the Martian atmosphere. Winds transport the water vapor, along with ubiquitous Martian dust, toward the equator and deposit it in a meters-thick layer as far as 30 degrees north and south latitude. There, it drapes over existing terrain, smoothing the Martian surface.

Head and his co-authors report that emplacement of this meters- thick layer of snow and dust at 30 degree latitudes represents an "ice age" on Mars. The small number of impact craters seen in these features, along with the known patterns of changes in Mars’ orbit and tilt, are used to estimate the age of these Martian ice ages.

The Nature findings complement a paper recently published in the journal Geology, in which Head and Marchant argue that features on the surface of the Red Planet are remarkably like glacial features found only in the Dry Valleys.

The findings not only have implications for the search for microbial life on Mars, but also may help scientists better understand the unique Polar desert environment of the Dry Valleys, and in particular the ancient climate record that may be stored in the landscape.

"These extreme changes on Mars provide perspective for interpreting what we see on Earth. Landforms on Mars that appear to be related to climate changes help us calibrate and understand similar landforms on Earth. Furthermore, the range of microenvironments in the Antarctic Dry Valleys helps us read the Mars record," said Marchant.

If the analogy between the geologic processes on Mars and those in the Dry Valleys holds true, then scientists may conclude that Mars may be more hospitable to microbial life than previously suspected.

Biologists continue to make discoveries that push back the boundaries at which conditions are too extreme to support life. NSF-funded researchers, for example, have offered evidence that microbes can survive in extremes of cold and darkness between ice crystals at the South Pole.

Although the Dry Valleys were thought to be a virtual dead zone when first explored a century ago, new evidence suggests that the lakes and other landscape features support microscopic life.

Images/B-Roll: For Betacam SP B-roll of the Antarctic Dry Valleys, please contact Dena Headlee, dheadlee@nsf.gov, 703-292-7739

NSF Program Officer: Scott Borg, 703-292-8030, sborg@nsf.gov

Principal Investigator: David Marchant, 617-353-3236, marchant@bu.edu

Peter West | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

A blue stoplight to prevent runaway photosynthesis

27.09.2016 | Life Sciences

Malaysia's unique freshwater mussels in danger

27.09.2016 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>