Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds evidence for global methane release about 600 million years ago

18.12.2003


New findings may have implications for the stability of today’s climate



Scientists at the University of California, Riverside and Columbia University have found evidence of the release of an enormous quantity of methane gas as ice sheets melted at the end of a global ice age about 600 million years ago, possibly altering the ocean’s chemistry, influencing oxygen levels in the ocean and atmosphere, and enhancing climate warming because methane is a powerful greenhouse gas. The study was published in today’s issue of the journal Nature.

The global ice age is of particular interest to paleobiologists because it took place shortly before the first appearance of animals in the fossil record, and may have supplied an environmental drive to evolution. The Earth’s most severe climate is thought to have occurred about 600 million years ago with ice sheets stretching to the tropics. Some scientists have referred to times of such extreme cold as a "snowball Earth" condition, assuming that the ocean would have been totally ice covered.


The new evidence is based on a chemical fingerprint of the methane gas from rocks in south China, which is strongly enriched in lighter carbon isotope, carbon-12, and which the researchers measured in ancient ocean carbonate sediments that were deposited as the temperature rose. The methane gas was apparently derived from the melting of frozen methane clathrate crystals that had accumulated beneath the seafloor.

"The extremely negative isotopic values from these sediments provide unambiguous evidence for methane-derived carbon," said Ganqing Jiang, a researcher at the University of California, Riverside, and the article’s lead author. "The identification of a methane-derived isotope signal and widespread seep-like deposits indicate the massive passage of methane through the sediments," he added. "We now have an important record of the role methane plays in climate change and the global carbon cycle."

Methane clathrates are increasingly thought to play a role in mass extinctions associated with significant climate change in the Earth’s history, and they are a large and exceedingly unstable source of greenhouse gas, greater than the equivalent of instantaneously burning all the oil reserves on Earth.

"Linking these dramatic climate events to changes in the methane clathrate pool has important implications for the stability of our current climate," said Martin Kennedy, an associate professor of geology at UC Riverside. "The Earth has a large unstable pool of these clathrates in ocean sediments today, and it is thought that a few degrees of ocean warming could trigger large-scale release into the atmosphere. We now have strong evidence of this doomsday scenario in one of the most important intervals of Earth’s biologic history".

The recognition of extreme isotope variability in the rocks examined in south China is expected to stimulate new research.

"This is a very exciting result because the existence of methane seeps and their possible significance in explaining the unusual carbon isotopic signature of the carbonate deposits had been discounted by many on the basis of the lack of expected isotopic heterogeneity," said Nicholas Christie-Blick, a professor of earth and environmental sciences at the Lamont-Doherty Earth Observatory of Columbia University. "If the methane hydrate hypothesis is borne out by new studies that are sure to be stimulated by this research, it represents one more reason for questioning why the snowball Earth edifice is needed."

The National Science Foundation’s (NSF) division of earth sciences funded the research. NSF is the federal agency responsible for supporting basic science, engineering and education research. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion.


Web Resources The Lamont-Doherty Earth Observatory at Columbia University: http://www.ldeo.columbia.edu/
Nicholas Christie-Blick’s Web page: http://www.ldeo.columbia.edu/~ncb/
Martin Kennedy’s Web page: http://earthscience.ucr.edu/index.php?content=people/kennedy/kennedy.html


The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development.

Ricardo Duran | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.ldeo.columbia.edu/~ncb/
http://earthscience.ucr.edu/index.php?content=people/kennedy/kennedy.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>