Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds evidence for global methane release about 600 million years ago

18.12.2003


New findings may have implications for the stability of today’s climate



Scientists at the University of California, Riverside and Columbia University have found evidence of the release of an enormous quantity of methane gas as ice sheets melted at the end of a global ice age about 600 million years ago, possibly altering the ocean’s chemistry, influencing oxygen levels in the ocean and atmosphere, and enhancing climate warming because methane is a powerful greenhouse gas. The study was published in today’s issue of the journal Nature.

The global ice age is of particular interest to paleobiologists because it took place shortly before the first appearance of animals in the fossil record, and may have supplied an environmental drive to evolution. The Earth’s most severe climate is thought to have occurred about 600 million years ago with ice sheets stretching to the tropics. Some scientists have referred to times of such extreme cold as a "snowball Earth" condition, assuming that the ocean would have been totally ice covered.


The new evidence is based on a chemical fingerprint of the methane gas from rocks in south China, which is strongly enriched in lighter carbon isotope, carbon-12, and which the researchers measured in ancient ocean carbonate sediments that were deposited as the temperature rose. The methane gas was apparently derived from the melting of frozen methane clathrate crystals that had accumulated beneath the seafloor.

"The extremely negative isotopic values from these sediments provide unambiguous evidence for methane-derived carbon," said Ganqing Jiang, a researcher at the University of California, Riverside, and the article’s lead author. "The identification of a methane-derived isotope signal and widespread seep-like deposits indicate the massive passage of methane through the sediments," he added. "We now have an important record of the role methane plays in climate change and the global carbon cycle."

Methane clathrates are increasingly thought to play a role in mass extinctions associated with significant climate change in the Earth’s history, and they are a large and exceedingly unstable source of greenhouse gas, greater than the equivalent of instantaneously burning all the oil reserves on Earth.

"Linking these dramatic climate events to changes in the methane clathrate pool has important implications for the stability of our current climate," said Martin Kennedy, an associate professor of geology at UC Riverside. "The Earth has a large unstable pool of these clathrates in ocean sediments today, and it is thought that a few degrees of ocean warming could trigger large-scale release into the atmosphere. We now have strong evidence of this doomsday scenario in one of the most important intervals of Earth’s biologic history".

The recognition of extreme isotope variability in the rocks examined in south China is expected to stimulate new research.

"This is a very exciting result because the existence of methane seeps and their possible significance in explaining the unusual carbon isotopic signature of the carbonate deposits had been discounted by many on the basis of the lack of expected isotopic heterogeneity," said Nicholas Christie-Blick, a professor of earth and environmental sciences at the Lamont-Doherty Earth Observatory of Columbia University. "If the methane hydrate hypothesis is borne out by new studies that are sure to be stimulated by this research, it represents one more reason for questioning why the snowball Earth edifice is needed."

The National Science Foundation’s (NSF) division of earth sciences funded the research. NSF is the federal agency responsible for supporting basic science, engineering and education research. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion.


Web Resources The Lamont-Doherty Earth Observatory at Columbia University: http://www.ldeo.columbia.edu/
Nicholas Christie-Blick’s Web page: http://www.ldeo.columbia.edu/~ncb/
Martin Kennedy’s Web page: http://earthscience.ucr.edu/index.php?content=people/kennedy/kennedy.html


The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development.

Ricardo Duran | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.ldeo.columbia.edu/~ncb/
http://earthscience.ucr.edu/index.php?content=people/kennedy/kennedy.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>