Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of erosion and precipitation in the Himalayas presents surprising findings scholars say

11.12.2003


Scientists have found that, despite a vast difference in precipitation between the north and south sides of the Himalaya Mountains, rates of erosion are indistinguishable across these mountains.



Douglas Burbank, professor of geology and director of the Institute for Crustal Studies at the University of California, Santa Barbara, is the first author of the article, "Decoupling of erosion and precipitation in the Himalayas," to be published Thursday, December 11, in the international scientific journal Nature.

This four-year study of the interactions between climate, erosion and tectonic deformation was funded by the National Science Foundation. The Himalayas were chosen because of their unique combination of massive topography, monsoon rains, and rapid erosion.


The study relies on a network of 20 weather stations arrayed across the Himalayas. Jaakko Putkonen of the University of Washington installed and maintains the weather stations. These stations are unique in that many of them are located on mountain tops as high as 15,000 feet, whereas nearly all weather stations around the world are located in valleys.

Burbank and his team found that the difference in precipitation between the north and south is striking. The monsoon rains that originate over the Indian Ocean are drawn toward the Himalayas. As monsoon storms rise over the mountains, their moisture is wrung out of them, drenching the south side of the Himalayas with 15 feet of rainfall each summer. By contrast, to the north of the Himalayan summits, summer rainfall amounts to only about one foot. "Given this profound difference in rainfall, we expected to see large differences in rates of erosion. But this is not what we found," said Burbank.

Additionally, he explained that the tectonic plate of India is colliding with and thrusting under that of Asia at a rate of about two inches per year. About half of that collision is absorbed by the Himalayas, thrusting the mountains upward between India and Tibet. When coupled with erosion, this thrusting carries rocks to the surface from deep in the Earth’s crust.

As rocks move toward the surface, they cool, and this cooling provides the researchers with a means to measure erosion at geological time scales of millions of years. Using a mineral-dating technique called fission-track dating, co-author Ann Blythe at the University of Southern California showed that it took about a half a million years for Himalayan rocks to cool from about 280 degrees Fahrenheit to surface temperatures. Because temperatures of 280 degrees occur one to two miles deep in the crust, Blythe’s dating implies that two to four miles of rock are eroded from the Himalaya every million years.

Not only are these rates of erosion rapid, but they show no significant variation from the monsoon-drenched flank of the Himalaya to the arid conditions north of the range. This unexpected discovery led the researchers to search for the cause of this uniform erosion.

They noted that, as the climate gets drier, the mountainsides get steeper. Such steep slopes can cause landslides (and erosion) more easily with less rainfall than a gentle slope. Also, glaciers periodically advance across the northern areas and may erode very efficiently, despite the drier climate. Burbank and his team also proposed that river channels get narrower in the drier areas, thus concentrating more energy on the bedrock and eroding it just as fast as in the wetter areas.

The importance of this study, he said, lies in the fact that erosion rates are not closely linked to the dramatic changes in climate. Instead, the collision of India and Asia drives rocks steadily upward in the Himalaya and erosion sweeps them rapidly away.

In this project, Burbank is spearheading work by scholars at six other universities besides UCSB: Harvard, Dartmouth, MIT, University of Southern California, University of Washington, and the University of Wyoming. They work with the Nepalese Department of Hydrology and Meteorology.


Note: Douglas Burbank is participating in the American Geophysical Union conference in San Francisco (Dec. 9 to Dec. 11) and can be reached at The Pickwick Hotel at 415-421-7500.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>