Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of erosion and precipitation in the Himalayas presents surprising findings scholars say

11.12.2003


Scientists have found that, despite a vast difference in precipitation between the north and south sides of the Himalaya Mountains, rates of erosion are indistinguishable across these mountains.



Douglas Burbank, professor of geology and director of the Institute for Crustal Studies at the University of California, Santa Barbara, is the first author of the article, "Decoupling of erosion and precipitation in the Himalayas," to be published Thursday, December 11, in the international scientific journal Nature.

This four-year study of the interactions between climate, erosion and tectonic deformation was funded by the National Science Foundation. The Himalayas were chosen because of their unique combination of massive topography, monsoon rains, and rapid erosion.


The study relies on a network of 20 weather stations arrayed across the Himalayas. Jaakko Putkonen of the University of Washington installed and maintains the weather stations. These stations are unique in that many of them are located on mountain tops as high as 15,000 feet, whereas nearly all weather stations around the world are located in valleys.

Burbank and his team found that the difference in precipitation between the north and south is striking. The monsoon rains that originate over the Indian Ocean are drawn toward the Himalayas. As monsoon storms rise over the mountains, their moisture is wrung out of them, drenching the south side of the Himalayas with 15 feet of rainfall each summer. By contrast, to the north of the Himalayan summits, summer rainfall amounts to only about one foot. "Given this profound difference in rainfall, we expected to see large differences in rates of erosion. But this is not what we found," said Burbank.

Additionally, he explained that the tectonic plate of India is colliding with and thrusting under that of Asia at a rate of about two inches per year. About half of that collision is absorbed by the Himalayas, thrusting the mountains upward between India and Tibet. When coupled with erosion, this thrusting carries rocks to the surface from deep in the Earth’s crust.

As rocks move toward the surface, they cool, and this cooling provides the researchers with a means to measure erosion at geological time scales of millions of years. Using a mineral-dating technique called fission-track dating, co-author Ann Blythe at the University of Southern California showed that it took about a half a million years for Himalayan rocks to cool from about 280 degrees Fahrenheit to surface temperatures. Because temperatures of 280 degrees occur one to two miles deep in the crust, Blythe’s dating implies that two to four miles of rock are eroded from the Himalaya every million years.

Not only are these rates of erosion rapid, but they show no significant variation from the monsoon-drenched flank of the Himalaya to the arid conditions north of the range. This unexpected discovery led the researchers to search for the cause of this uniform erosion.

They noted that, as the climate gets drier, the mountainsides get steeper. Such steep slopes can cause landslides (and erosion) more easily with less rainfall than a gentle slope. Also, glaciers periodically advance across the northern areas and may erode very efficiently, despite the drier climate. Burbank and his team also proposed that river channels get narrower in the drier areas, thus concentrating more energy on the bedrock and eroding it just as fast as in the wetter areas.

The importance of this study, he said, lies in the fact that erosion rates are not closely linked to the dramatic changes in climate. Instead, the collision of India and Asia drives rocks steadily upward in the Himalaya and erosion sweeps them rapidly away.

In this project, Burbank is spearheading work by scholars at six other universities besides UCSB: Harvard, Dartmouth, MIT, University of Southern California, University of Washington, and the University of Wyoming. They work with the Nepalese Department of Hydrology and Meteorology.


Note: Douglas Burbank is participating in the American Geophysical Union conference in San Francisco (Dec. 9 to Dec. 11) and can be reached at The Pickwick Hotel at 415-421-7500.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>