Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric compound is double-edged sword in climate change

09.12.2003


Recent studies suggest that an atmospheric compound derived primarily from coal combustion may have contradictory effects on the earth’s climate.



Under many conditions, sulfuric acid may cool the earth’s atmosphere. Sulfuric acid particles seem to scatter ultraviolet light back into space before it has a change to enter the troposphere – the bottom layer of earth’s atmosphere. But if conditions are right, this same chemical can warm the earth by combining with other compounds in the atmosphere to form clouds.

Researchers at Ohio State University looked at the interaction of sulfuric acid and methanol and what the compounds’ combined effect might mean to global climate change. Both compounds are usually found in aerosol form in the upper atmosphere.


Scientists believe that methanol comes primarily from natural sources, such as oceans, forests and the decay of organic matter. While there are a few natural sources for sulfuric acid, such as volcanoes and marine sea spray, its precursor – sulfur dioxide – comes mainly from the burning of coal. In the atmosphere, sulfur dioxide is oxidized primarily by atmospheric moisture, resulting in sulfuric acid.

Sulfuric acid molecules in atmospheric aerosols can act as sort of a force field by reflecting light and heat back into space, said Heather Allen, a study co-author and an assistant professor of chemistry at Ohio State. This reflection contributes to a cooling effect on the earth. Methanol by itself doesn’t really have an effect on climate change.

But when the two molecules get together – about 5 to 10 percent of the methanol in the atmospheric aerosols reacts with sulfuric acid – they form methyl sulfate. Methyl sulfate is less volatile than methanol, meaning there’s less chance that methyl sulfate will evaporate or be vaporized.

And while it seems like a relatively small amount of methanol gets converted to methyl sulfate, it’s still enough to have an impact on global climate change, Allen said.

She and colleague Lisa Van Loon, a doctoral student in chemistry at Ohio State, found that methyl sulfate’s stability provides a springboard for cloud formation – water droplets collect on the stable molecules and eventually form clouds. Instead of causing light and heat to bounce back into space, most clouds create a warming effect by trapping light and heat in the atmosphere.

Van Loon presented the findings December 12 at the fall meeting of the American Geophysical Union in San Francisco.

The researchers used a laboratory technique called Raman spectroscopy to analyze the behavior of methanol, sulfuric acid and methyl sulfate. They focused a beam of laser light onto a sample of each substance in order to analyze differences in the bonds that hold the molecules together. The frequencies of the resulting wavelengths told the researchers how the compounds behaved, and also how methanol and sulfuric acid interacted. From this information, they could determine what each compound might do in the atmosphere.

The researchers found that sulfuric acid combines with a small amount of methanol– essentially starting points for cloud formation.

But the conditions must be right in order to create methyl sulfate, Allen said.

"The atmospheric chemistry community is trying to understand what conditions let these atmospheric particles combine, or cause them to stay aerosol-sized," Allen said, adding that cloud particles are about three times the size of aerosol particles.

The interaction between sulfuric acid and methanol affects global climate change and the aerosol picture, Allen said.

"Right now these aerosols are probably helping to slow down the human-induced warming effect on the earth, but it’s a complicated balance that we’re struggling to fully understand," she said. "We certainly know that the earth is warming at a rate that isn’t totally natural. It’s the warming rate that we’re more concerned about.

"More aerosols emitted into the atmosphere may lead to cooling," Allen continued. "But if these aerosols are able to combine with other compounds and ultimately form clouds, it could have a warming effect. There’s a complex balance between warming and cooling."


This work was funded by the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.

Contact: Heather Allen, (614) 292-4707; Allen@chemistry.ohio-state.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | EurekAlert!
Further information:
http://www.acs.ohio-state.edu/units/research/

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>