Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Last catastrophic landslide protects Kilauea from next


Marine seismology reveals Hawaiian volcano’s past, sheds light on future dangers

The Hawaiian Islands are home to the largest documented shoreline collapse in history, an ancient seaward landslide that sent rocks from the island of Oahu to sites more than 100 miles offshore. The avalanche of debris from the northeast shore of Oahu probably occurred between 1.5 and 3 million years ago, and it undoubtedly created one of the largest tsunamis in Earth’s history, a wave large enough to inundate every coastline of the northern Pacific Ocean.

Today, geologists are studying whether seismic and tectonic forces are creating the potential for a similar disaster on the southeast shore of the big island of Hawaii, near Kilauea volcano. The world’s most active volcano, Kilauea is continually growing larger. At the same time, its seaward flank is moving toward the Pacific, currently at the rate of about 10 centimeters per year. Kilauea’s movement takes several forms. Layers of lava and sediment atop the mountain are pulled down by the force of gravity. The entire mountain itself also moves slowly out to sea as magma derived from deep within the earth’s mantle intrudes into the core of the volcano.

"From previous studies, we know that Kilauea is the site of an active landslide, the Hilina slump, which has moved in historic times," said Julia Morgan, assistant professor of Earth Science at Rice University. "We now recognize that Kilauea also experienced a catastrophic landslide in the past, possibly within 25,000-50,000 years, which is quite recent in geologic terms."

The 10-by-15 mile Hilina slump is partially detached from the seaward flank of Kilauea, and is thought to be a candidate for catastrophic collapse. At this week’s fall meeting of the American Geophysical Union in San Francisco, Morgan will present new findings that the debris left over from the last catastrophic landslide on Kilauea is forming a buffer that stabilizes the Hilina slump. Morgan and her colleagues, Gregory Moore at the University of Hawaii and David Clague at Monterey Bay Aquarium Research Institute (MBARI), reached this conclusion after a comprehensive analysis of two offshore seismic and seafloor mapping surveys conducted in 1998 by the Lamont-Doherty Earth Observatory and MBARI.

They found that the most recent collapse on Kilauea involved a detached piece of the mountain that was similar in size to the Hilina slump and located immediately to its northeast. When this section of the volcano slid away, it settled beneath the ocean at the base of Kilauea. As the entire volcano grew and slid oceanward, this debris piled up, much like snow piles up in front of a snowplow. The result is a broad, bench-like, submarine structure that sits at the foot of the mountain, about 15-20 miles off the coast. The downslope edge of the Hilina slump now impinges on the outer bench.

"Based on what we’ve seen, we believe that the outer bench is still growing, and we expect that the buttressing effect it exerts on the Hilina slump will increase accordingly," Morgan said. "This interaction reduces the likelihood of catastrophic detachment of the Hilina slump under present conditions."

However, because the outer bench contains a good deal of loose sediment and debris, it is also subject to catastrophic failure. For instance, the bench is riddled with small-scale faults and fractures. A massive volcanic eruption or a large earthquake like the 7.2-magnitude temblor that hit Hawaii in 1975 could shake the outer bench to pieces. Morgan said there is geologic evidence that something similar occurred on nearby Mauna Loa about 100,000 years ago.

The research was funded by the National Science Foundation, with additional support from Landmark Graphics Corp.

Jade Boyd | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>