Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last catastrophic landslide protects Kilauea from next

08.12.2003


Marine seismology reveals Hawaiian volcano’s past, sheds light on future dangers



The Hawaiian Islands are home to the largest documented shoreline collapse in history, an ancient seaward landslide that sent rocks from the island of Oahu to sites more than 100 miles offshore. The avalanche of debris from the northeast shore of Oahu probably occurred between 1.5 and 3 million years ago, and it undoubtedly created one of the largest tsunamis in Earth’s history, a wave large enough to inundate every coastline of the northern Pacific Ocean.

Today, geologists are studying whether seismic and tectonic forces are creating the potential for a similar disaster on the southeast shore of the big island of Hawaii, near Kilauea volcano. The world’s most active volcano, Kilauea is continually growing larger. At the same time, its seaward flank is moving toward the Pacific, currently at the rate of about 10 centimeters per year. Kilauea’s movement takes several forms. Layers of lava and sediment atop the mountain are pulled down by the force of gravity. The entire mountain itself also moves slowly out to sea as magma derived from deep within the earth’s mantle intrudes into the core of the volcano.


"From previous studies, we know that Kilauea is the site of an active landslide, the Hilina slump, which has moved in historic times," said Julia Morgan, assistant professor of Earth Science at Rice University. "We now recognize that Kilauea also experienced a catastrophic landslide in the past, possibly within 25,000-50,000 years, which is quite recent in geologic terms."

The 10-by-15 mile Hilina slump is partially detached from the seaward flank of Kilauea, and is thought to be a candidate for catastrophic collapse. At this week’s fall meeting of the American Geophysical Union in San Francisco, Morgan will present new findings that the debris left over from the last catastrophic landslide on Kilauea is forming a buffer that stabilizes the Hilina slump. Morgan and her colleagues, Gregory Moore at the University of Hawaii and David Clague at Monterey Bay Aquarium Research Institute (MBARI), reached this conclusion after a comprehensive analysis of two offshore seismic and seafloor mapping surveys conducted in 1998 by the Lamont-Doherty Earth Observatory and MBARI.

They found that the most recent collapse on Kilauea involved a detached piece of the mountain that was similar in size to the Hilina slump and located immediately to its northeast. When this section of the volcano slid away, it settled beneath the ocean at the base of Kilauea. As the entire volcano grew and slid oceanward, this debris piled up, much like snow piles up in front of a snowplow. The result is a broad, bench-like, submarine structure that sits at the foot of the mountain, about 15-20 miles off the coast. The downslope edge of the Hilina slump now impinges on the outer bench.

"Based on what we’ve seen, we believe that the outer bench is still growing, and we expect that the buttressing effect it exerts on the Hilina slump will increase accordingly," Morgan said. "This interaction reduces the likelihood of catastrophic detachment of the Hilina slump under present conditions."

However, because the outer bench contains a good deal of loose sediment and debris, it is also subject to catastrophic failure. For instance, the bench is riddled with small-scale faults and fractures. A massive volcanic eruption or a large earthquake like the 7.2-magnitude temblor that hit Hawaii in 1975 could shake the outer bench to pieces. Morgan said there is geologic evidence that something similar occurred on nearby Mauna Loa about 100,000 years ago.


The research was funded by the National Science Foundation, with additional support from Landmark Graphics Corp.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/
http://www.riceinfo.rice.edu/projects/reno/photos/slope.html

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>