Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’CAT-scan’-like seismic study of earthquake zone helps set the stage for fault drilling project

05.12.2003


In a first-of-its-kind study, seismologists have used tiny "microearthquakes" along a section of California’s notorious San Andreas Fault to create unique images of the contorted geology scientists will face as they continue drilling deeper into the fault zone to construct a major earthquake "observatory."



A chain of 32 seismometers recorded the small earthquakes at underground locations along a 7,100-foot-deep vertical drill hole. This eight-inch-diameter pilot hole was excavated last year about 1.1 miles southwest of the San Andreas Fault to monitor earthquake activity and assess the area’s underground environment before drilling the main hole. After more vertical drilling at the same location next summer, the main hole will be angled off towards the northeast to pierce the fault zone itself.

In a paper in the Friday, Dec. 5, 2003 issue of the research journal Science, researchers from Duke University and the United States Geological Survey (USGS) described how they used seismic signals and computer analysis to derive outlines of what may be secondary faults, and perhaps fluid filled cracks, in subterranean locations between the main fault and the pilot hole.


The scientists created those color-coded images by tracing the complex paths earthquake waves took after scattering off the possible underground structures. The scientists’ goal was to pinpoint not the earthquake sources but rather features between those sources and the detecting seismometers.

"The seismic waves that we recorded are telling us a story about what’s happening within the Earth," said Andres Chavarria, a senior graduate student in seismology at Duke’s Nicholas School of the Environment and Earth Sciences, who is first author of the Science paper.

"This is the first seismic study to employ an array of deeply placed seismometers and nearby microearthquakes to study a major active fault zone," added Duke seismology professor Peter Malin, another author of the study. "It’s an important piece of information that has to be taken into account for understanding the mechanics of the fault zone at depth," Chavarria said. "Our results show that this part of the San Andreas Fault is a more complex zone than previously thought."

Other authors included Duke research scientist Elyon Shalev and Rufus Catchings of the USGS in Menlo Park, Calif. Catchings was a visiting scholar working with the Duke team when the main ideas behind the study were conceived. The study was supported by the National Science Foundation (NSF).

The San Andreas Fault extends about 800 miles on land from near the Mexican border to north of San Francisco Bay and is identified as the source of numerous devastating earthquakes, including the one that decimated San Francisco in 1906. These quakes are believed to be caused by sudden releases of stress between two huge blocks of the Earth’s crust, the westernmost of which is slowly grinding northwestward past the other.

In parts of the San Andreas, the western block slips quietly by the eastern block in what scientists call an "aseismic creep." But other earthquake-producing sections remain locked up for long periods before dramatically letting go.

The San Andreas Fault Observatory at Depth (SAFOD) is being jointly managed by scientists from Stanford University and the USGS and is receiving more than $20 million in federal support as part of NSF’s new EarthScope initiative (see www.earthscope.org). SAFOD will be located near the tiny town of Parkfield, Calif., which bills itself "the earthquake capitol of the world" because of its unusual history of repeating earthquakes of significant intensity.

Co-author Malin installed in the SAFOD pilot hole seismometers he helped design, each instrument built to detect vibrations in three directions and also withstand the 220 degree Fahrenheit temperatures and 300 atmosphere pressures possible in the pilot deep hole’s reaches.

Because the instruments are below ground and thus shielded from surface noise, they can detect the very small microearthquakes in the fault’s vicinity that occur much more frequently than larger ones.

The new "Science" paper describes the authors’ analyses of "secondary signals" emanating from 43 such microearthquakes, plus 11 additional surface test explosions. The microearthquakes and the human-produced shocks each originated within about five miles of the pilot hole. The paper proposes that that the secondary signals represent energy from the disturbances that was then scattered-off underground structures before arriving at the pilot hole’s detecting seismometers.

Chavarria compared the analytical technique to medical computerized tomography -- CAT scans – which creates internal anatomical images by tracing the paths of x-rays passing through the body at different angles. "In seismology we do something similar, analyzing seismic signals to give us a kind of tomography of the Earth," he said.

The scattering zones as imaged by the analysis "may represent secondary faults in the San Andreas Fault zone," the authors wrote in "Science." These results imply that continued drilling towards the fault zone for the SAFOD project "will encounter at least one significant structure, quite likely another fault, before reaching it," the paper added.

There is also evidence to corroborate results of a 1997 study by Malin and others that suggested the possibility of fluid-filled cracks in the fault’s main branch, the authors wrote.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>