Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress, promise in space-based earthquake research

05.12.2003


Nearly 10 years after Los Angeles was shaken by the devastating, magnitude 6.7 Northridge earthquake, scientists at NASA and other institutions say maturing space-based technologies, new ground-based techniques and more complex computer models are rapidly advancing our understanding of earthquakes and earthquake processes.



Dr. Andrea Donnellan, a geophysicist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., says the past decade has seen substantial progress in space-based earthquake research. "We’ve confirmed through space observation the Earth’s surface is constantly moving, periodically resulting in earthquakes, and we can measure both the seismically quiet motions before and after earthquakes, as well as the earthquakes themselves," she explains. "These technologies are allowing us to pursue lines of data and research we didn’t know existed only a few years ago."

Two months before the Northridge earthquake, Donnellan and university colleagues published a paper in the journal Nature on ground deformation north of Los Angeles’ San Fernando Valley. Six years of Global Positioning System (GPS) data showed the area’s faults were active and building up strain, and indicated the size and style of a potential earthquake there. Following the earthquake, the data made it possible to rapidly determine where the fault ruptured and to measure how the earthquake had deformed the Earth’s surface.


Space-based instruments can image Earth movements to within fractions of an inch, measuring the slow buildup of deformation along faults, and mapping ground deformation after an earthquake. Two primary tools are the space-based GPS navigation system and Interferometric Synthetic Aperture Radar (InSAR). The latter compares satellite radar images of Earth taken at different times to detect ground movement.

InSAR complements surface measurements because it lets us look at whole regions in a spatial context. An InSAR mission is also a key component of EarthScope, a jointly led initiative by the National Science Foundation (NSF), NASA and the U.S. Geological Survey (USGS).

EarthScope studies the North American continent’s structure and evolution, and the physical processes that control earthquakes and volcanic eruptions, according to Dr. James Whitcomb, section head for Special Projects, Earth Sciences Division, National Science Foundation, Arlington, Va.

Precise Earth surface-movement data measure strain, and provide a first approximation of where earthquakes are likely to occur, notes Dr. Brad Hager, a Massachusetts Institute of Technology (MIT) professor and co-author of the 1993 Nature paper. "In California, patterns of ground deformation are complicated by the complex interactions between fault systems," he says. "Interpreting this data requires computer models that can estimate how much deformation has accumulated and identify regions where strain should be released, but hasn’t been."

University of California, Davis, researcher Dr. John Rundle says the complexity of earthquakes requires we study them as part of the full Earth system. "Most natural events result from interrelated Earth processes over various lengths and times," he adds. "These processes have variables that can’t be readily observed, so understanding them requires computers."

NASA’s QuakeSim project is developing a similar forecasting methodology. Its tools simulate earthquake processes, and manage and model the increasing quantities of data available. "We’re focusing on observing and understanding earthquakes in space and time, and developing methods that use patterns of small earthquakes to forecast larger ones," Rundle explains. "New simulations of earthquakes on California’s active faults are providing considerable insight, showing earthquakes tend to "cluster" in space and time due to their interactions: that is, an earthquake on one fault section can turn on or off earthquake activity on nearby fault sections, depending on the relative orientation of the faults. Simulations have led researchers to conclude that fault system geometry determines earthquake activity patterns."

A NASA/Department of Energy-funded research team reports promising results from an experiment to forecast earthquakes in southern/central California from 2000 to 2010. It uses mathematical methods to forecast likely locations of earthquakes above magnitude 5 by processing data on earthquakes of about magnitude 3 from the past decade. The high-risk regions identified in the forecast are refined from those already identified by the government as susceptible to large earthquakes. Five earthquakes greater than magnitude 5 have occurred since the research was completed, all in those high-risk regions.

Dr. Wayne Thatcher, a senior research geophysicist at the USGS, Menlo Park, Calif., says as these technologies are validated they will be transferred to end users. "Such data and models improve understanding of earthquake and volcanic processes, substantially refining seismic hazard maps and resulting in more appropriate, earthquake-resistant construction codes and more targeted retrofitting strategies," he says.


Points of contact for other organizations cited in this release are: Andy Fell, University of California, Davis, 530-752-4533; Stephanie Hannah, USGS, 206-220-4573; Deborah Halber, MIT, 617-258-9276; Cheryl Dybas, NSF, 703-292-7734.

David E. Steitz | GSFC
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>