Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress, promise in space-based earthquake research

05.12.2003


Nearly 10 years after Los Angeles was shaken by the devastating, magnitude 6.7 Northridge earthquake, scientists at NASA and other institutions say maturing space-based technologies, new ground-based techniques and more complex computer models are rapidly advancing our understanding of earthquakes and earthquake processes.



Dr. Andrea Donnellan, a geophysicist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., says the past decade has seen substantial progress in space-based earthquake research. "We’ve confirmed through space observation the Earth’s surface is constantly moving, periodically resulting in earthquakes, and we can measure both the seismically quiet motions before and after earthquakes, as well as the earthquakes themselves," she explains. "These technologies are allowing us to pursue lines of data and research we didn’t know existed only a few years ago."

Two months before the Northridge earthquake, Donnellan and university colleagues published a paper in the journal Nature on ground deformation north of Los Angeles’ San Fernando Valley. Six years of Global Positioning System (GPS) data showed the area’s faults were active and building up strain, and indicated the size and style of a potential earthquake there. Following the earthquake, the data made it possible to rapidly determine where the fault ruptured and to measure how the earthquake had deformed the Earth’s surface.


Space-based instruments can image Earth movements to within fractions of an inch, measuring the slow buildup of deformation along faults, and mapping ground deformation after an earthquake. Two primary tools are the space-based GPS navigation system and Interferometric Synthetic Aperture Radar (InSAR). The latter compares satellite radar images of Earth taken at different times to detect ground movement.

InSAR complements surface measurements because it lets us look at whole regions in a spatial context. An InSAR mission is also a key component of EarthScope, a jointly led initiative by the National Science Foundation (NSF), NASA and the U.S. Geological Survey (USGS).

EarthScope studies the North American continent’s structure and evolution, and the physical processes that control earthquakes and volcanic eruptions, according to Dr. James Whitcomb, section head for Special Projects, Earth Sciences Division, National Science Foundation, Arlington, Va.

Precise Earth surface-movement data measure strain, and provide a first approximation of where earthquakes are likely to occur, notes Dr. Brad Hager, a Massachusetts Institute of Technology (MIT) professor and co-author of the 1993 Nature paper. "In California, patterns of ground deformation are complicated by the complex interactions between fault systems," he says. "Interpreting this data requires computer models that can estimate how much deformation has accumulated and identify regions where strain should be released, but hasn’t been."

University of California, Davis, researcher Dr. John Rundle says the complexity of earthquakes requires we study them as part of the full Earth system. "Most natural events result from interrelated Earth processes over various lengths and times," he adds. "These processes have variables that can’t be readily observed, so understanding them requires computers."

NASA’s QuakeSim project is developing a similar forecasting methodology. Its tools simulate earthquake processes, and manage and model the increasing quantities of data available. "We’re focusing on observing and understanding earthquakes in space and time, and developing methods that use patterns of small earthquakes to forecast larger ones," Rundle explains. "New simulations of earthquakes on California’s active faults are providing considerable insight, showing earthquakes tend to "cluster" in space and time due to their interactions: that is, an earthquake on one fault section can turn on or off earthquake activity on nearby fault sections, depending on the relative orientation of the faults. Simulations have led researchers to conclude that fault system geometry determines earthquake activity patterns."

A NASA/Department of Energy-funded research team reports promising results from an experiment to forecast earthquakes in southern/central California from 2000 to 2010. It uses mathematical methods to forecast likely locations of earthquakes above magnitude 5 by processing data on earthquakes of about magnitude 3 from the past decade. The high-risk regions identified in the forecast are refined from those already identified by the government as susceptible to large earthquakes. Five earthquakes greater than magnitude 5 have occurred since the research was completed, all in those high-risk regions.

Dr. Wayne Thatcher, a senior research geophysicist at the USGS, Menlo Park, Calif., says as these technologies are validated they will be transferred to end users. "Such data and models improve understanding of earthquake and volcanic processes, substantially refining seismic hazard maps and resulting in more appropriate, earthquake-resistant construction codes and more targeted retrofitting strategies," he says.


Points of contact for other organizations cited in this release are: Andy Fell, University of California, Davis, 530-752-4533; Stephanie Hannah, USGS, 206-220-4573; Deborah Halber, MIT, 617-258-9276; Cheryl Dybas, NSF, 703-292-7734.

David E. Steitz | GSFC
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

nachricht The significance of seaweed
16.09.2016 | King Abdullah University of Science and Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>