Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanuatu: The coral reef, record of a 23,000 year history

04.12.2003


A research team from the IRD "Tropical Palaeo-environments and climatic variability" research unit and their American co-workers (1) have succeeded in retracing over a 23 000 year period the history of a coral reef of the Island of Urelapa, in Vanuatu. This fossil reef bears the record of the longest continuous growth – 17 000 years – ever studied by scientists (2). For the first time, researchers have at their disposal uninterrupted records of environmental data on the whole of the deglaciation period, which began around 20 000 years ago (3). A major finding is that the Urelapa reef changed growth strategy, in response to environmental changes which occurred during the post-glacial sea-level rise. More broadly, this research has brought new key information which contributes to a better understanding of the influence of climatic change on the coral reefs of the Pacific, which are the most complex ecosystems of the marine environment.



In the course of the last glacial maximum, around 20 000 years B.P., sea levels reached their lowest point, at 120 to 130 metres below the present level. The subsequent ice-cap melting induced a gradual rise of the oceans up to current levels. In the tropical regions, these large-amplitude fluctuations have contributed to the formation and growth of coral reefs.

IRD researchers at Noumea, in conjunction with scientists from three American universities (1), have just reconstructed the history of the oldest post-glacial reef ever studied in the Pacific which has grown under the influence of sea-level oscillations. This reef is situated at Urelapa, off the island of Espiritu Santo in the Vanuatu group in the South-West Pacific. It shows the longest recorded continuous growth, at 17 000 years, between 23 000 and 6 000 years B.P.. (2). The scientists thus have at their disposal environmental data (sea-levels, quantity of nutrients, temperatures, and so on) covering the entire period of deglaciation (3).


Core samples from five boreholes made on the island were analysed. Data was taken on the sedimentology, palaeontology, radiochronology (dating of the corals) and palaeoecology (study of communities of fossil organisms like corals, algae and molluscs). Character and morphological analysis of the corals (whether tabular, branched, massive or foliaceous) and the calcareous algae species which are associated with them gave clues which put together produced a reconstruction of the different stages of the reef’s development (4). These corals reveal a strong ability to adapt. The reef developed according to two different and successive growth processes, in response to variations in environmental conditions and, in particular, to sea-level changes.

From 23 000 to about 11 300 years B.P., the reef developed continuously, keeping to the shallow marine habitats. The corals thus followed the rise in the oceans very closely. The associations of ramified corals, including species of the Acropora genus, with red encrusting algae, as coralgal assemblages, forming the basis of the reef frameworks, found at horizons dating from this period, are specific to shallow well-lit, high wave-energy environments (at depths less than 6 m), ideal conditions for reef growth.

However, from 11 300 to 6 000 years B.P. the coral colony morphology, consisting mainly of massive Porites species, and changes observed in the associations of organisms show a deeper, calm water (i.e. low wave-energy) habitat (10 to 20 m), where light penetration is poorer. Coral reef growth slowed during this period and did not keep up with the rising sea level. In fact, an acceleration of deglaciation and of the rise in sea level are known to have occurred 11 300 B.P. They indeed led to changes in the environmental conditions. These induced in the reef a change-over from a keep-up mode of growth geared to keeping pace with sea-level rise to a catch-up mode. The reef could no longer keep up to the surface. It was temporarily completely submerged, before it could succeed in catching up with the water level. This reef-sequence study showed that the reef nevertheless managed to grow throughout the deglaciation period by modifying its structure and morphology. It did this by favouring species capable of adapting to new environmental conditions.

Coral reef development depends on external factors (sea water temperatures, salinity, nutrient content and input, tectonic activity, the nature of the rock substrate, and so on). The respective roles of these parameters in determining which of the two types of growth process prevails are still not really known. Further drilling investigations in different environments of the Pacific, such as some which have been conducted in New-Caledonia, Tahiti and Vanuatu, should reveal more about the impact of each factor and allow assessment of their variations for all parts of that ocean. The aim of this research is to gain better understanding of the influence of climatic changes on these marine complex ecosystems. Fundamental information that can be obtained on the installation, formation and development of coral reefs in the tropical zone should make it possible in the long run to elaborate models of their growth.

(1) Department of geology and geophysics of the University of Minnesota, Department of physics of the University of Arizona (Tucson) and Institute of Geophysics of the University of Texas (Austin).
(2) The longest continuous growth -14 000 years- known up to now had been found on the barrier reef of Tahiti in 1999. See scientific bulletin n° 106 (January 2000)
(3) They had hitherto, for the tropical zone, only fragmented reef growth data which was spread too widely over time. Reconstitution enabled them only to gather information for the past 22 000 years, with no guarantee of a real continuity.
(4) As the community structure of fossil fauna and flora species is closely bound to the water depth, degree of light penetration and to calm or rough conditions, it is a valuable indicator of the type of reef growth prevailing at a given time.

Bénédicte Robert | EurekAlert!
Further information:
http://www.paris.ird.fr/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>