Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic monitors detect physical changes deep within faults

04.12.2003


Nature publishes new findings that could lead to improved earthquake assessments



Seismologists have long known that the buildup of forces along fault zones cause the physical properties of rock and sediments to change deep inside the Earth, at the level where earthquakes occur. Based upon new findings, researchers believe they may be able to design active seismic monitoring systems that continually monitor these subtle changes, looking for telltale signs of an impending earthquake.

The new findings, published in the Dec. 4 issue of the journal Nature, are based on an extensive study of data collected between 1987 and 1997 by ultrasensitive borehole seismometers along the Parkfield segment of the San Andreas fault in central California. By comparing seismograms from a series of minor earthquakes that occurred both before and after a "slow" earthquake at Parkfield in 1993, the researchers were able to detect subtle changes in the level of stress along the fault zone that were caused by this event.


"Our study focused on S-waves, also known as shear waves, which are created during every earthquake," said study co-author Fenglin Niu, assistant professor of Earth Science at Rice University. "S-waves bounce off of deep fractures filled with fluid, and we believe our data show how these fluids were redistributed as a result of the aseismic event in 1993."

An aseismic event occurs when there is a significant amount of movement along a fault line. Unlike earthquakes, where movement occurs within a few seconds, aseismic movements can take place over days, weeks, months or even years. For this reason, they are sometimes called slow earthquakes.

Parkfield, a small town that lies on the San Andreas fault, was chosen as the site of a focused earthquake experiment by the U.S. Geological Survey because of the town’s history of magnitude-6 earthquakes. Such quakes occurred in 1857, 1881, 1901, 1922, 1934, and 1966. Believing that another magnitude-6 quake was likely to occur before 1993, the USGS began the Parkfield Experiment in 1985, positioning a dense network of instruments in an effort to capture unprecedented and detailed information about an earthquake as it happened. The long-expected magnitude-6 quake has yet to occur at Parkfield, though the annual probability remains around 10 percent.

For Niu and his colleagues, the dense network of instruments around Parkfield provided the critical data needed to prove that structural changes in faults can be detected with seismic instruments. Using data collected by borehole seismometers positioned about 200 meters below ground, the group looked at a series of areas that scattered the S-waves produced by minor quakes along the fault.

"With the seismic data from only one seismic station, it is very difficult to determine whether the physical properties of the material in the fault zone have changed or the positions of the minor earthquakes have shifted," said Niu.

Niu and colleagues Paul G. Silver of the Carnegie Institution in Washington, D.C., and Robert M. Nadeau and Thomas V. McEvilly, both of the University of California, Berkeley, were able to correct for movement errors by studying data from seismometers at various positions throughout the region.

Niu said the research could become increasingly important in coming years because it provides a basis for understanding the structural changes that could be viewed with active seismic monitoring systems. Given recent improvements in seismic technology, seismologists are now considering how to design active seismic systems that monitor fault behavior continuously.


The study was funded by Rice, the Carnegie Institution of Washington, NASA and the USGS.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

If solubilty is the problem - Mechanochemistry is the solution

25.05.2018 | Life Sciences

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018 | Interdisciplinary Research

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>