Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic monitors detect physical changes deep within faults

04.12.2003


Nature publishes new findings that could lead to improved earthquake assessments



Seismologists have long known that the buildup of forces along fault zones cause the physical properties of rock and sediments to change deep inside the Earth, at the level where earthquakes occur. Based upon new findings, researchers believe they may be able to design active seismic monitoring systems that continually monitor these subtle changes, looking for telltale signs of an impending earthquake.

The new findings, published in the Dec. 4 issue of the journal Nature, are based on an extensive study of data collected between 1987 and 1997 by ultrasensitive borehole seismometers along the Parkfield segment of the San Andreas fault in central California. By comparing seismograms from a series of minor earthquakes that occurred both before and after a "slow" earthquake at Parkfield in 1993, the researchers were able to detect subtle changes in the level of stress along the fault zone that were caused by this event.


"Our study focused on S-waves, also known as shear waves, which are created during every earthquake," said study co-author Fenglin Niu, assistant professor of Earth Science at Rice University. "S-waves bounce off of deep fractures filled with fluid, and we believe our data show how these fluids were redistributed as a result of the aseismic event in 1993."

An aseismic event occurs when there is a significant amount of movement along a fault line. Unlike earthquakes, where movement occurs within a few seconds, aseismic movements can take place over days, weeks, months or even years. For this reason, they are sometimes called slow earthquakes.

Parkfield, a small town that lies on the San Andreas fault, was chosen as the site of a focused earthquake experiment by the U.S. Geological Survey because of the town’s history of magnitude-6 earthquakes. Such quakes occurred in 1857, 1881, 1901, 1922, 1934, and 1966. Believing that another magnitude-6 quake was likely to occur before 1993, the USGS began the Parkfield Experiment in 1985, positioning a dense network of instruments in an effort to capture unprecedented and detailed information about an earthquake as it happened. The long-expected magnitude-6 quake has yet to occur at Parkfield, though the annual probability remains around 10 percent.

For Niu and his colleagues, the dense network of instruments around Parkfield provided the critical data needed to prove that structural changes in faults can be detected with seismic instruments. Using data collected by borehole seismometers positioned about 200 meters below ground, the group looked at a series of areas that scattered the S-waves produced by minor quakes along the fault.

"With the seismic data from only one seismic station, it is very difficult to determine whether the physical properties of the material in the fault zone have changed or the positions of the minor earthquakes have shifted," said Niu.

Niu and colleagues Paul G. Silver of the Carnegie Institution in Washington, D.C., and Robert M. Nadeau and Thomas V. McEvilly, both of the University of California, Berkeley, were able to correct for movement errors by studying data from seismometers at various positions throughout the region.

Niu said the research could become increasingly important in coming years because it provides a basis for understanding the structural changes that could be viewed with active seismic monitoring systems. Given recent improvements in seismic technology, seismologists are now considering how to design active seismic systems that monitor fault behavior continuously.


The study was funded by Rice, the Carnegie Institution of Washington, NASA and the USGS.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>