Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Utah’s redrock may have changed global climate

04.12.2003


The Navajo Sandstone -- one of the brightly colored rock formations that comprise southern Utah’s famous redrock -- is exposed in the cliffs at Zion National Park, the Petrified Dunes at Arches National Park and in many parts of Capitol Reef National Park.

Now, a new study from the University of Utah concludes that bleaching patterns in the Navajo Sandstone suggest the rock formation once may have harbored vast amounts of hydrocarbons, likely natural gas (methane). And when the once-buried sandstone was exposed and started eroding roughly 6 million years ago, the gas would have been released to the atmosphere. Because methane is a so-called "greenhouse gas," the release of large quantities to the atmosphere may have warmed Earth’s ancient climate.

The study was published in the December 2003 issue of the journal Geology by Brenda Beitler, a University of Utah doctoral student in geology. A summary of that study is reproduced below. It was part of a news release issued by the Geological Society of America outlining contents of the December issue of Geology.




Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants? Brenda Beitler, University of Utah, Department of Geology and Geophysics, Salt Lake City, UT 84112-0111, U.S.A.; et al. Pages 1041-1044.
Spectacular color variations in the Jurassic Navajo Sandstone in southern Utah have long attracted the attention of geologists and laypersons alike. In this paper, we explain the cause of the color variations and discuss the implications. The Navajo Sandstone is perhaps the largest eolian (sand dune) complex on Earth, past or present. Abrupt red-white color transitions are believed to be the result of reducing fluids, likely gas hydrocarbons, flowing through the sandstone pores and removing the red pigment.

Field mapping and analysis of satellite imagery indicate both stratigraphic and structural control on where fluids have left the sandstone "bleached." The most extensive regional bleaching occurs on eroded crests of broad asymmetrical uplifts produced during Laramide deformation (Cretaceous-Tertiary age). Alteration patterns suggest that the faults that core these uplifts were carriers for hydrocarbons and brought the buoyant bleaching fluids to the crests of the anticlines where they bleached the sandstone in both structural and stratigraphic traps.

The extent of bleaching indicates that the Navajo Sandstone may have been one of the largest hydrocarbon reservoirs known. These ancient hydrocarbon traps have been extensively eroded, potentially releasing the bleaching gas into the atmosphere. The magnitude of the reservoir suggests that hydrocarbon escape could be significant in global carbon fluxes and possibly influence climate.

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu/

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>