Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling earthquake risk of gas fields

03.12.2003


Using qualitative modelling, the risk of earthquakes due to gas extraction can be determined more clearly. “This is done by using three dimensional modelling software to calculate and simulate the forces and movements around geological faults deep under the ground,” says Frans Mulders who, on 3 December, will defend his PhD thesis at TU Delft. “Currently, the KNMI determines the probability of earthquakes primarily through statistical data,” says Mulders. “It is important to complement that data with knowledge of the geological structure underground.” Mulder conducted his research in cooperation with TNO-NITG, NAM, Shell, KNMI and State Supervision of Mines.

In recent months, three light earthquakes hit the province of Groningen. Geologists agree that the quakes are related to gas extraction. It is possible to use historical statistical data of these kind events to make a prediction for the future. “That is what the KNMI (national research and information centre for climate, climatic change and seismology) is currently doing,” says Mulders. “Valuable data, but combining this with knowledge of underground the geological structure is worth recommendation. This is currently being worked on at TNO-NITG in cooperation with KNMI.”

Mulders used three dimensional (3D) simulations to research activity deep under the ground. He has integrated so-called Mobilised Shear Capacity (MSC) parameters into his models. This parameter provides a numerical value for the instability of certain layers and the faults they contain. Mulders: “Such a parameter, linked to other data, forms a basis for the calculation of the probability of earthquakes near gas fields.” According to Mulder, earthquakes will continue to happen every now and then in Groningen. “As long as gas is extracted, there will be movement in the ground.”



The numerical models that Mulders has developed are representative for the underground of the Northern Netherlands, but due to their generic character they are also representative for other oil and gas fields in similar conditions. “Here the weakness of the models also shows,” says Mulders, “While you can simulate many situations with the 3D models, you need a lot of data on the geological structure of the area to produce good estimations. This data is often lacking.” The combination of statistics, 3D modelling and geological information needs further research.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>