Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old bones and new buildings

04.12.2003


Researchers at the University of Durham are helping to preserve major historical sites.

Led by Professor Robert Allison under NERC’s Urban Regeneration and the Environment (URGENT) Programme, the scientists have developed a novel method of monitoring and testing archaeological sites uncovered by developers. Their research has involved a wide range of sites in central London.

St Mary Spital is one of the most important archaeological finds of our time. Archaeologists uncovered pits containing thousands of skeletons which are believed to have been the remains of people struck down by epidemics. They believe that these people, and probably thousands more who survived, were treated in this early hospital.



The research carried out by the scientists used remains from St. Mary Spital. The laboratory and field studies from this and other sites were of fundamental importance to the research.

Says Professor Allison, "We carried out an analysis of the soils and sediments on many sites in London and of different types of remains and development processes. This research is a prime example of how we can help to preserve our nation’s heritage in a cost-effective way."

St. Mary Spital was just one of a number of sites in London where this type of research has been carried out. On this site a sample of human bone was extracted for analysis, following an archaeological excavation which revealed the find. From other sites different types of artefacts, including wood and glass, have been removed and taken to the laboratory for analysis.

Other tests carried out at the sites involved monitoring ground-vibration patterns on a range of different development techniques.

Professor Allison’s research team were able to provide advice on the best techniques to preserve the artefacts while still enabling the site to be developed into an office complex. Their knowledge and expertise means that planners, developers and construction engineers may find that dealing with archaeological remains is much easier in future.

The locations selected for research were chosen, in part, because of the way in which the developers managed the site and their sympathetic treatment of archaeological issues. The results coming from the research carried out by scientists on these sites will, in turn, support the developers in ensuring the continuation of their own goals for high-quality development.

As a direct result of the work they carried out on the sites in London, the scientists are now getting the chance to further test their research. They have been awarded a commercial contract to analyse a site off the A1 at Garforth, near Leeds in Yorkshire. Iron-age and Roman artefacts have been uncovered in the groundworks for a new road. Professor Allison and his team have been brought in to advise the best method of preserving the find. If they are successful in their analysis the scientists will preserve the heritage of the site, while the developer will still be able to build his road.

Marion O’Sullivan | NERC
Further information:
http://www.nerc.ac.uk

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>