Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old bones and new buildings

04.12.2003


Researchers at the University of Durham are helping to preserve major historical sites.

Led by Professor Robert Allison under NERC’s Urban Regeneration and the Environment (URGENT) Programme, the scientists have developed a novel method of monitoring and testing archaeological sites uncovered by developers. Their research has involved a wide range of sites in central London.

St Mary Spital is one of the most important archaeological finds of our time. Archaeologists uncovered pits containing thousands of skeletons which are believed to have been the remains of people struck down by epidemics. They believe that these people, and probably thousands more who survived, were treated in this early hospital.



The research carried out by the scientists used remains from St. Mary Spital. The laboratory and field studies from this and other sites were of fundamental importance to the research.

Says Professor Allison, "We carried out an analysis of the soils and sediments on many sites in London and of different types of remains and development processes. This research is a prime example of how we can help to preserve our nation’s heritage in a cost-effective way."

St. Mary Spital was just one of a number of sites in London where this type of research has been carried out. On this site a sample of human bone was extracted for analysis, following an archaeological excavation which revealed the find. From other sites different types of artefacts, including wood and glass, have been removed and taken to the laboratory for analysis.

Other tests carried out at the sites involved monitoring ground-vibration patterns on a range of different development techniques.

Professor Allison’s research team were able to provide advice on the best techniques to preserve the artefacts while still enabling the site to be developed into an office complex. Their knowledge and expertise means that planners, developers and construction engineers may find that dealing with archaeological remains is much easier in future.

The locations selected for research were chosen, in part, because of the way in which the developers managed the site and their sympathetic treatment of archaeological issues. The results coming from the research carried out by scientists on these sites will, in turn, support the developers in ensuring the continuation of their own goals for high-quality development.

As a direct result of the work they carried out on the sites in London, the scientists are now getting the chance to further test their research. They have been awarded a commercial contract to analyse a site off the A1 at Garforth, near Leeds in Yorkshire. Iron-age and Roman artefacts have been uncovered in the groundworks for a new road. Professor Allison and his team have been brought in to advise the best method of preserving the find. If they are successful in their analysis the scientists will preserve the heritage of the site, while the developer will still be able to build his road.

Marion O’Sullivan | NERC
Further information:
http://www.nerc.ac.uk

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>