Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’No doubt’ human activity is affecting global climate

03.12.2003


Two of the nation’s premier atmospheric scientists, after reviewing extensive research by their colleagues, say there is no longer any doubt that human activities are having measurable-and increasing-impacts on global climate. Their study cites atmospheric observations and multiple computer models to paint a detailed picture of climate changes likely to buffet Earth in coming decades, including rising temperatures and an increase in extreme weather events, such as flooding and drought. The study appears December 5 in Science as part of the journal’s "State of the Planet" series.


Drought and other extreme climate events may become more likely in the future because of global climate change. (Photo by Carlye Calvin)


Motor vehicles are a significant source of carbon dioxide. Two of the nation’s premier atmospheric scientists now say there is "no doubt" that carbon dioxide emissions, along with other human-related activities, are impacting global climate. (Photo by Carlye Calvin)



The coauthors-Thomas Karl, director of NOAA’s National Climatic Data Center, and Kevin Trenberth, head of the Climate Analysis Section at the National Center for Atmospheric Research (NCAR)-conclude that industrial emissions have been the dominant influence on climate change for the past 50 years, overwhelming natural forces. The most important of these emissions is carbon dioxide, a greenhouse gas that traps solar radiation and warms the planet.

"There is no doubt that the composition of the atmosphere is changing because of human activities, and today greenhouse gases are the largest human influence on global climate," they write. "The likely result is more frequent heat waves, droughts, extreme precipitation events, and related impacts, e.g., wildfires, heat stress, vegetation changes, and sea-level rise which will be regionally dependent."


Karl and Trenberth estimate that, between 1990 and 2100, there is a 90 percent probability that global temperatures will rise by 1.7 to 4.9 degrees Celsius (3.1 to 8.9 degrees Fahrenheit), because of human influences on climate. Such warming would have widespread impacts on society and the environment, including continued melting of glaciers and the great ice sheets of Greenland, inundating the world’s coasts. The authors base their estimate on computer model experiments by climate scientists, observations of atmospheric changes, and recorded climate changes over the past century.

However, there is still large uncertainty in understanding the global climate and how it will change, says Karl. If temperatures rise 1.7 degrees, the expected changes would be relatively small, whereas a 4.9-degree increase could bring drastic impacts, some of which may be unforeseen.

Carbon dioxide levels in the atmosphere have risen by 31 percent since preindustrial times, from 280 parts per million by volume (ppmv) to over 370 ppmv today. Other human activities, such as emissions of sulfate and soot particles and the development of urban areas, have significant but more localized climate impacts. Such activities may enhance or mask the larger-scale warming from greenhouse gases, but not offset it, according to the authors.

If societies could successfully cut emissions and stabilize carbon dioxide levels in the atmosphere, temperatures would still increase by an estimated 0.5 degree C (0.9 degree F) over a period of decades, Karl and Trenberth warn. This is because greenhouse gases are slow to cycle out of the atmosphere. "Given what has happened to date and is projected in the future, significant further climate change is guaranteed," the authors state.

If current emissions continue, the world would face the fastest rate of climate change in at least the last 10,000 years. This could potentially alter ocean current circulations and radically change existing climate patterns. Moreover, certain natural processes would tend to accelerate the warming. For example, as snow cover melts away, the darker land and water surface would absorb more solar radiation, further increasing temperatures.

Karl and Trenberth say more research is needed to pin down both the global and regional impacts of climate change. Scientists, for example, have yet to determine the temperature impacts of increased cloud cover or how changes in the atmosphere will influence El Niño, the periodic warming of Pacific Ocean waters that affects weather patterns throughout much of the world. The authors call for multiple computer model studies to address the complex aspects of weather and climate. The models must be able to integrate all components of Earth’s climate system-physical, chemical, and biological. This, in turn, will require considerable international cooperation and the establishment of a global climate monitoring system to collect and analyze data.

Because of the broad range of potential change in temperature, it’s extremely important to ensure that we have a comprehensive observing system to track unforeseen changes and variations, says Karl.

"Climate change is truly a global issue, one that may prove to be humanity’s greatest challenge," the authors conclude. "It is very unlikely to be adequately addressed without greatly improved international cooperation and action."


To subscribe via e-mail send name, title, affiliation, postal address, fax, and phone number to yvonnem@ucar.edu.

Anatta | UCAR
Further information:
http://www.ucar.edu/communications/newsreleases/2003

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>